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Abstract For any subsetl of X, let Pre?5(A) be the preimage
{r € X|3y € A-z § y}. The commutation property
A topological space idloetheriariff every open is com-  ensures that the preimadree”s(V') of any upward-closed
pact. Our starting point is that this notion generalizesttha subsetV is again upward-closed/( is upward-closed iff
of well-quasi order, in the sense that an Alexandroff-ciser ~ wheneverz € V andz < 2/, thenz’ € V). Standard
space is Noetherian iff its specialization quasi-ordering ~ arguments then show that one may compte™ 5(V),
well. For more general spaces, this opens the way to ver-the set of states iX’ from which we can reach some state
ifying infinite transition systems based on non-well quasi in V' in finitely many steps: Compute the sét of states
ordered sets, but where the preimage operator satisfies anfrom which we can reach some statéirin at most steps,
additional continuity assumption. The technical develop- backwards, by = V, V41 = V; U Pre? §(V;): this
ment rests heavily on techniques arising from topology and stabilizes at some stagewhereV; = Pre™ §(V)).

domain theory, including sobriety and the de Groot dual of  This provides an algorithm for coverability: given two
a stably compact space. We show that the cate®dtiir statesr, ' € X, isthere atrace = z0 8 ©1 6 ... & ay,

of Noetherian spaces is finitely complete and finitely cocom-g,ch that’ < 2,,? Just check € Pre™ (1 2'), wherel '
plete. Finally, we note that ik’ is a Noetherian space, then s the upward-closed séy € X |z’ < y}.

the set of all (even infinite) subsets ¥fis again Noethe-

rian, a result that fails for well-quasi orders. Outline. ~ We generalize this by replacing quasi-

orderings by topologies. We shall definitely rest on the
rich relationship between theories of order and topology.
We recapitulate what we need in two sections, Section 2
1. Introduction for basic notions, and Section 5 for more advanced con-
cepts such as Stone duality, sobriety, and stable compact-
ness which we don’t need in earlier sections. The Zariski
topology on spectra of Noetherian rings was the first known
Noetherian topology; we discuss it only in Section 8, in the
. o . . light of the rest of our paper. Our contribution occupies the
Recal_l that a well _qua5|-orqler|ng IS a quasi-ordering other sections. We first show the tight relationship between
(a reflexive and transitive relation) that is not only well- well-quasi orders and Noetherian spaces in Section 3, and
foupdgq, e, .has ho infinite Qescending chain, but also hasshow a few easy constructions of new Noetherian spaces
no infinite antichain (a set of incomparable elements). Onefrom given Noetherian spaces in Section 4. This culminates
use c_;f_ well quasi-orderings is in verifyingell-stru_c_tured in showing that the categothr of Noetherian spaces
transition systemf2, 4, 11, 14]. These are fransition sys- is finitely cocomplete. Section 6 is technically more chal-

tems, usually infinite-state, with two ingredients. lenging, and characterizes those Noetherian spaces that ar

A topological spaceX is Noetherianff every open sub-
set of X is compact [13, chapitre 0, § 2]. We shall explain
how this generalizes the theory of well quasi-orders.

First, awell quasi-ordering< on the also sober. This is the cornerstone of the theory. E.g., this
set X of states. Second, the transi-* —<=2z' (1) is instrumental to show th&thr is finitely complete, and

tion relations commutes withs, i.e., s that the Hoare space of a Noetherian space is again Noethe-
if z 6 yandxz < 2/, then there is a v rian. We show the latter in Section 7. We then prove the
statey’ such that’ 6 ¥ andy < y': Yooy unexpected result that the setalf subsets of a Noetherian
Examples include Petri nets, VASS [15], lossy channel sys-SpaceX (even infinite ones) has a topology that makes it
tems [3], timed Petri nets [6] to cite a few. Noetherian. This would be wrong in a pure theory of or-

ders; topology makes the difference. Finally, our theory of
*Partially supported by the INRIA ARC ProNoBis. Noetherian sober spaces suggests an alternative algorithm




for coverability based on computing downward-closed sets, K C | J,; U;, thenK C U; for somei ¢ I already. (A
which we describe in Section 9. We conclude in Section 10. family (z;),., of elements quasi-ordered by is a non-

We stress that this paper is not specifically geared to-empty family such that for every, j € I there isk € I
wards applications. Its aim is rather to lay the theoretical such thate; < z; andz; < zy.)

basis for Noetherian topological spaces. Wiite 1 E={r e X|Fye F-y<z}, | E={z ¢
Related Work. If < is a quasi-ordering oX then let X|3y € E -z < y}. If K is compact, therj K is, too,
P i, (X) be the set of finite subsets &f, and order it by<*, and is also saturated. We shall usually reserve the létter

whereA <* B iff for every y € B there is anz € A such for saturated compacts. Whdnis finite, T F is compact
thatz < 5. Itis well-known that<* needs not be well even  saturated: call these tlii@itary compactsSimilarly, | E is
when < is well. This is a shortcoming, among others, of closed: call these thinitary closed subsets

the theory of well quasi-orderings. Such shortcomings led We have gone one direction, from topology to quasi-
Nash-Williams [23] to invent better quasi-orderings (hgos orderings. There are in general many return paths. The
Bgos have a rather unintuitive definition but a wonderful finest topology having< as specialization quasi-ordering is
theory, see [19]. The only application of bgos we know of to the Alexandroff topologyf <. Its opens are the upward-
verification problems is by Abdulla and Nylén [5], where it closed subsets oK with respect to<. The coarsest is

is used to show the termination of the backward reachability the upper topology generated by the complements of sets

iteration, usinglisjunctiveconstraints. | {z}, = € X. Its closed sets are the unions of subsets
This paper is not on bgos, and in fact not specifically of the form| E, E finite. An intermediate topology is the
on well quasi-orderings. While bgos aestrictionsof well Scott topologywhose opens are those upward-closed sub-

quasi-orderings, Noetherian spageseralizehe latter. We  setsU such that every directed famili:;),, that has a
hope that Noetherian spaces will be valuable in verifica- least upper bound iy meetslU. The latter crops up in do-
tion in the future. The fact thdP;;,(X), with the upper  main theory, where &pois a partially ordered set where
topology of<*, and thatP(X), with another topology, are  every directed family has a least upper bound.
Noetherian wheneveX is (Section 7) is a promising result. A topological space islexandroff-discretéff every in-
Our work is more connected to topology, and in partic- tersection of opens is again open. Equivalently, iff itsolep
ular to topology as it is practiced in domain theory. As we ogy is the Alexandroff topology of its specialization quasi
shall see later, the notions of specialization quasi-ander  ordering. While every finitary compact is compact satu-
of a topological space, of upper, Scott and Alexandroff rated, the converse holds in Alexandroff-discrete spaces.
topologies, of sober space, of sobrification of a space, and A map f from X to Y is continuousiff f=(V) is
of stably compact spaces are central to our work. Topology open inX for every openV of Y. Any continuous func-
and domain theory form another wonderful piece of mathe- tion is monotonic with respect to the specialization quasi-

matics, and one may consult [12, 7, 18, 21]. orderings of X and Y. The converse holds wheX
Last but not least, Noetherian spaces arise from algebraids Alexandroff-discrete: while continuity is usually seen
geometry [13]: we discuss this briefly in Section 8. as stronger than monotonicity, continuity algeneralizes
monotonicity, in the sense that monotonicity is just conti-
2. Preliminaries |: Order and Topology nuity with respect to Alexandroff topologies.

When X and Y are equipped with Scott topologies,
f : X — Y is continuous iff f is Scott-continuousi.e.,
J is monotonic and, for every directed family;),.; in X
having a least upper bound the family (f(x;)),.,; (which
is directed inY") admits f(z) as least upper bound. Conti-
nuity notions extend to binary relations. A relati®ifrom
X toYisasubsetok x Y. Itislower semi-continuouiéf
Pre?R(V) = {z € X|3y € V -z R y} is open whenever
V is. Itis upper semi-continuou§f Pre” R(V) = {z € X|
Yy-x Ry =y € V}isopenwhenevel is.

A topologyO on a setX is a collection of subsets (the
open$ of X that is closed under arbitrary unions and finite
intersections. We say tha itself is a topological space,
leaving© implicit. The complements of opens arsed
The largest open contained His its interior, the smallest
closed subset](A) containing it is itsclosure

Every topology comes with apecialization quasi-
ordering <, defined as < y iff every open that contains
x also containg,. Equivalently,x € cl{y}. It is easy to
see that every open is upward-closed with respest tbhe
converse need not hold. A subsebf X is saturatediff A 3. Well-Quasi Orders and Noetherian Spaces
equals the intersection of all opebiscontainingA, equiva-
lently iff it is upward-closed with respect te. We first relate well-quasi orders and Noetherian spaces.

A subseti of X is compaciff every open cove(U;), .,
contains a finite subcover. Alternativelyy is compact  Proposition 3.1 Consider the following properties of a
iff, for every directed family(U;),., of opens such that topological spaceX, with specialization quasi-ordering:



1. X is Noetherian;

2. X is a space where every open is finitary compact;
3. <is a well quasi-ordering.

Then3 implies 2, 2 implies 1, and if X is Alexandroff-
discrete then implies3.

Proof. 3 = 2: Every open is upward-closed, and ev-
ery upward-closed subset is finitary compact by assump-
tion. 2 = 1 is obvious. Let us show =- 3, assumingX
Alexandroff-discrete. Each upward-closed subset is open,
hence compact saturated byhence finitary compact since
X is Alexandroff-discrete. O

This allows us to claim that Noetherian spaces are exactly
the topological counterpart of the order-theoretic notibn
well quasi-order. In particular, there are many Noetherian
spaces: equip any well quasi-orderedXewith its Alexan-
droff topology. As we shall see, there are others.

The following well-known characterization of Noethe-
rian spaces will be useful. L€1(X) be the set of all opens
of X, ordered by inclusion. A sét with a quasi-ordering
C has theascending chain conditioiff every infinite as-
cending chainyg C y; C ... C y, C ... stabilizesi.e.,
there is an integeN such thaty, C yy for everyk > N.

Proposition 3.2 Let X be a topological space. TheX is
Noetherian iff2(X) has the ascending chain condition.

The backward computation &fre”* of the introduction
extends easily, as follows. Let@apological well-structured
transition systerbe a pain X, ¢), whereX, thestate space
is a Noetherian space, afigdthetransition relation is lower

labels taken as the (not necessarily disjoint) union of two
subsets ofmust labelsandmay labelsrespectively. Letd
be a recursive set of so-callatbmic formulae

F == A atomic formula(A € A)
| X variable
| T true
| FAF conjunction
| L false
| FVF disjunction
|  [QF box modality(¢ € Lust)
| (OF diamond modality¢ € L;,q,)
| wpX-F leastfixed point

Formulae are interpreted in &ripke structure I
(X, (0e)per> (Ua) 4c4), WhereX is a topological spacé,
is a binary relation orX, which is lower semi-continuous
when?¢ € L, and upper semi-continuous wheéne
Lpust, andUy4 is an open ofX for every atomic formula
A. An environmentp maps variablesX to opens ofX.
Define the satisfaction relatian =/ F as usual. In par-
ticular, z = [¢]F iff for every statey such thatz d; y,

y ) F; x =] (0)F iff for some statey such thatz 6 y,

y =L Frandz =L uX - Fiff z € U5 U, wherelUy = 0,
Uin1 = {2z € X|z F}x._y F} plX = Ul is the envi-
ronment mappind{ to U, and everyY” # X to p(Y).

Let Ifp be the least fixed point operator of Scott-
continuous functiong: Ifp(f) o0 £1(0), and write
I[F]; p for the set of elements € Z such that: =] F.
The semantics of formulae is characterized by the clauses:

semi-continuous. Then again, the sequence of backward

iteratesV; terminates, by Proposition 3.2:

Proposition 3.3 Let (X,6) be a topological well-
structured transition system. For any open subgetlet

Vo =V, Viy1 = V; UPre” §(V;). The sequence/;),y is

an ascending chain, which stabilizes Bre™ (V).

We retrieve that backwards iterations terminate on well-
structured transition systems (a well-known fact), beeaus

Proposition 3.4 Each well-structured transition system
(X,9) is a topological well-structured transition system.
The converse holds wheh is Alexandroff-discrete.

Write A for the complement ofA.  Note that
Pre’(4) = Pre?§(A), that complements of upward-
closed sets are downward-closed,

and conversely. So, again whéh = —<=2' (2)
is Alexandroff-discretey is upper

semi-continuous iff the dual of Dia- v b

gram (1) holds: Yooy

One may then go a bit further than just reachability. De-
fine the following negation-free fragment of the mogal
calculus. Letl = Lyt U Ly be afinite set ofransition

I[Al;p=Ua I[X]5p=p(X)

I[Tlsp=X I[FAAE];p=1[F]spNI[F]sp
Ii]sp=0 IRV E]p=I1[F];pUl[F]sp
1110 F]; p = Preso(I [l p)

IO F]sp = Pfeafsf(f [F5 p)

ITuX - Fl, p = oAU € 2(X) - T[Ty (o[X = U))

An easy structural induction oR then shows thai [F]; p
is always open.

When X is Noetherian, the above formulae describe an
obvious algorithm for computing [F]; p. The only non-
trivial case is for formulae of the formX - F'. However,
we may computéfp(f) for any Scott-continuous function
f:Q(X) — Q(X) (in fact for any monotoni¢: whenX is
Noetherian, every monotonijt : Q(X) — Q(X) is Scott-
continuous) byUy = 0, U; 41 = f(U;); this defines an as-
cending chain, which stabilizes by Proposition 3.2. We need
to detect when this stabilizes, and so we require the inclu-
sion relation to be decidable. Note that by Proposition 3.1,
every operlUU can be represented as a finitary comgaét,
that is, as a finite list of elements. ClearlyE C 1 E’ iff
E' <! E,i.e., for everyx € E, there is ay € E’ such that
y € x. The quasi-ordering* is usually called th&Smyth



quasi-ordering and is decidable as soon ass. (l.e., each
elementr € X has a unique coder™ € {0,1}*, and<is
a computable binary predicate on codes.) Assumelihat
andp(X) are specified by given finite sels andEY, i.e.,
Ua=1E4andp(X) =1 E%. We obtain:

Theorem 3.5 Let X be a Noetherian space, and assume

that its specialization quasi-ordering is recursive. As-

sume thab, is recursive, in the sense that for any finite sub-

setFE of X, we can compute a finite subgetof X such that

Pre?6(1 E) = 1 E' ({ € Lyay) andPre"s(1 E) = T E'

(¢ € Lust)- LetUy, p(X) be specified by given finite sets.
Then there is an algorithm which, given a formuia

computes a finite s’ of elements such that[F];p =

1 E. In particular, checking whether bﬁ Fis decidable.

When ¢ € L4y, computing Prea*ée(V) is a spe-
cial case of the above evaluation scheme for formulae:
Pre®0,(V) = I [uX - AV (£)X]; p, wherep is arbitrary
and U4 V. One may also evaluate some forms of
monotonic games [1, 9]: reading, as the transition re-
lation for playerl, andd,, as that for playe®, the formula
uX - AV (61)(B A [€2)X) is true exactly at those states
xo such that playet has a strategy to win (reach the open
U 4 while preventing playe2 from reaching/z), whatever
player2’s moves.

4. Easy Constructions of Noetherian Spaces

We know that every well quasi-ordering yields a Noethe-
rian space, through its Alexandroff topology. For exam-
ple, N, N* with the componentwise ordering (Dickson’s
Lemma), the set of finite words over a well-quasi-ordered

alphabet, ordered by embedding (Higman’s Lemma), the Selooof

of finite labelled trees over a well-quasi-ordered sigretur

ordered by embedding (Kruskal’s Theorem). We describeX . Y. Such a coequalizer exists Fop
more constructions of new Noetherian spaces from old, and ' '
start with some easy ones. We shall consider finite productsf

in Section 6.2 only; this is harder.

The first observation is similar to the fact that, for every
well quasi-ordering<, any quasi-ordering’ such thate <
y impliesz <’ y is also a well quasi-ordering.

Lemma 4.1 Every topology coarser than a Noetherian
topology is Noetherian.

So for example, iK is a well quasi-ordering, then its Scott
topology and its upper topology are Noetherian topologies.
Every topological space with finitely many opens is also
trivially Noetherian. This includes the case of finite space

Recall that asubspac&” of a topological spac& is a
subset ofX whose topology is given by the intersections of
opens ofX with Y—theinducedtopology.

Lemma 4.2 Every subspace of a Noetherian space is
Noetherian.

Proof. LetU;NY C U;NY C ... CU,NY C
... be an ascending chain of opensYin The open subset
U = U/ T U; of X is compact, sinceX is Noetherian.
So for someK, U C Ufil U;. It follows thatU NY C
UK, UinY = UxgNY, hencel/,NY C UxNY for every
k > 1. We conclude by Proposition 3.2. O

ThecoproductX; +. ..+ X, of k spaces is their disjoint
union. Its opens are disjoint unions of opens, one from each
X, i.e.,Q(X1 + ...+ Xk) = Q(Xl) X ... X Q(Xk)

Lemma 4.3 The coproduct of finitely many Noetherian
spaces is Noetherian.

Being Noetherian is also preserved under direct images:

Lemma4.4 Letq : X — Z be a surjective continuous
map. If X is Noetherian then so 8.

Given an equivalence relatiaa on a topological space
X, thequotient spaceX /= is the set of equivalence classes
of =, topologized by taking the finest topology that makes
the quotient mapy= : X — X/= continuous, wherg=
mapsz € X to its equivalence class.

Corollary 4.5 Let X be a Noetherian spaces an equiva-
lence relation onX. ThenX /= is Noetherian.

Let Nthr be the category of Noetherian spaces and con-
tinuous maps. In other wordNthr is the full subcategory
of Top (the category of topological spaces) consisting of
Noetherian spaces.

Corollary 4.6 Nthr is finitely cocomplete.

It is enough to show that it has all finite coproducts
(Lemma 4.3), and all coequalizers of parallel pafirg” :
and is given by

Y /=, where= is the smallest equivalence relation such that
(x) = f'(z) forall z € X. Now apply Corollary 4.5. O

5. Preliminaries II: Sober Spaces

The material we shall now need is more involved, and
can be found in [12, 7, 21] and in [18].

Stone Duality. For every topological space, (X )isa
complete lattice. Every continuous map X — Y defines
a functionQ(f) : Q(Y) — Q(X), which maps every open
subset/ of Y to Q(f)(V) = f~1(V). The map(f) pre-
serves all least upper bounds (unions) and all finite greates
lower bounds (finite intersections), i.e. it iSrame homo-
morphism Letting CLat be the category of complete lat-
tices and frame homomorphisni3,defines a functor from
Top to CLat®?, the opposite category @Lat.



A frameis any complete lattice that obeys the infinite scribing the sobrification ofX [12, Chapter V, Exer-
distributivity law x A \/,c; ;i = Ve (x A ;). Let Frm cise 4.9], as the spac® X) of all irreducible closed sub-

be the category of frames. Its opposite categboe = sets ofX, with open subsets given ByU = { F irreducible
Frm®? is the category olocales closed| F N U # 0}, for each open subsét of X. Its spe-
Going the other way around is known &sone dual-  Cialization quasi-ordering is just inclusion. Up to thisime-

ity. A filter F on a complete latticd. is a non-empty ~ omorphism, the unitjx can be seen as a function frai
upward-closed family of elements éf such that whenever 1o S(X) that maps: € X to the irreducible closed sgtz.

x,y € I, the greatest lower boundA y is also inF'. F'is Stably Compact SpacesSober spaces areell-filtered
completely primdff for every family M C L whose least  [18, Definition 2.7]: for every open subséf, for ev-
upper boundy/ M is in F', then some element d¥f is al- ery filtered family(Q;), ., of saturated compacts such that

ready inF. A pointof L is by definition a completely prime  (,c; Q: € U, thereis an € I such tha); C U. (A fam-
filter of L. Letpt(L) be the set of points af. Topologize it  ily is filtered provided it is directed in the converse order-

by defining its opens as the séls = {F' € pt(L)|z € F}, ing D.) This is a consequence of the celebrated Hofmann-

x € L. One may check that this is indeed a topology [7, Mislove Theorem [7, Theorem 7.2.9].

Proposition 7.1.13]. Moreovept defines a functor from Say that a topological spacé is coherentiff the inter-

CLat°? to Top, and by restriction, fronLoc to Top. section of two saturated compacts is compactis locally
Then(Q is left adjoint topt, in notation{2 4 pt. This compactff every element has a basis of saturated compact

means that there are natural transformatigrs: X — neighborhoods. That is, wheneverc U with U open,

pt(©2(X)) (theunit of the adjunction) andy, : Q(pt(L)) — there is a saturated compagtsuch thatz is in the inte-

L (thecounitof the adjunction) such that,x o Q(ny) = rior of @, and@ C U. A stably compact spade a sober,

ido(x) andpt(er) o () = idpy(r)- Explicitly, nx (z) is coherent, locally compact and compact space.

the completely prime filter of all open neighborhoodsrof Let X be a stably compact space. One may show that

in X, ande;, mapsz € L to the open sab.,. the complements of saturated compactsXoform a new
Sober SpacesThe spacet(Q(X)) is called thesobri-  topology, the so-calledocompact topologyWrite X for

ficationof X. One may understand this as noticing that (at X under its cocompact topology: this is thle Groot dual
least if X is aT, space, i.e., when its specialization quasi- of X. Then X is again stably compact, anfi’! = X
ordering is a partial ordering)y is an embedding ok into [18, Corollary 2.13]. Moreover, the specialization quasi-
pt(Q(X)), so thatpt(Q(X)) is obtained fromX by adding  ordering ofX“ is the converse> of <.

elements, viz. those points 8 X') that are not of the form

nx(x), o € X. The spacet(Q2(X)) is thensober a sober g \More Constructions of Noetherian Spaces
space is &} space in which every irreducible closed set is

the closure of a unique point. A closed géis irreducible op
iff it is not empty, and if there are two closed séts and Let CCCLat be the full subcategory o€Lat™ con-

O, such thal” € Cy U Cy thenC C Cy or C C Cs. sisting of complete lattices (resfl.occc the full subcate-
One shows t_hal;X is injective if?X is Ty, a_nd addition- gory Of'Loc co'n.sisting of frgmes) that satisfy'the ascend-
ally surjective iff X is sober. EquivalentlyX is sober iff ing chain condition. Proposition 3.2 states thaihduces a

X is homeomorphic tet(L), for some complete latticg, functor fromNthr to CCCLat, and toLocce.

iff X = pt(Q(X)), iff nx is bijective (in which case it is _
automatically a homeomorphism). Lemma 6.1 The functor pt induces a functor from

The explicit description opt(Q(X)) of X is relatively ~ CCCLat (resp..Locec) to Nthr, right adjoint tof.

uninteresting. We have already said that2(X)) was a
form of completion ofX, where we add elements. A cru-
cial point is that this completion adds elemebtg no new
opens then opens opt(€2(X)) are of the formOy;, one for

Proof. Let us show thapt is a functor fromCCCLat,
resp.Loccc, to Nthr. This boils down to the fact that for
every complete latticé with the ascending chain condition,
each open subsét of X. Alternatively, the specialization pt(L) is Noetheria_n. By Proposition 3.2, it suffices to show
quasi-ordering< of a sober space turns it into a cpo. l.e., thateveryascending chait, € Oy, € ... C Oy, C ...
the pt o 2 construction formally adds all missing directed StaPilizes. Note tha0, ¢ O, iff z < y: the if di-
least upper bounds. One may for example check that thefection IS clear; conversely, 0, < Oy, thep the fil-
sobrification ofN (with the Alexandroff topology of its nat- ter] x IS completely prime, belongs 1., so it belongs
ural ordering) is, up to homeomorphisii,u {+oc} with ~ © Oy 1€,y € Tz, thatis,z < y. It follows that
non-empty open subsetsy, n € N. (Exercise: Thisisboth %1 = %2 < ... < @} < ... Is an ascending chain ip.
the Scott and the upper topology BinJ {+c0}.) So it stabilizes. o

Up to homeomorphism, there is a simpler way of de-  Sobrification preserves the property of being Noetherian:



Proposition 6.2 A spaceX is Noetherian iff its sobrifica-
tion pt(Q2(X)) = S(X) is Noetherian.

>~

Proof. If X is Noetherian, then so ist(Q2(X)), because
Q is a functor fromNthr to Loccc, andpt is one from
Loccc to Nthr (Lemma 6.1). SaS(X) = pt(Q(X)) is
Noetherian, too. Conversely, assuieX ) is Noetherian,
andletU; CU; C ... C Ui C...beaninfinite ascending
chaininX. ThenOU; C U, C ... C OU, C ... isan
infinite ascending chain i§(X), so it stabilizes: for some
N € N, foreveryk > N, Uy C OUy. Foreveryr € Uy,
| xisin OUy, so it is in OUy, thereforex € Uy. So
Ur C Uy, showing that the ascending chdih C U; C
... C U, C...also stabilizes. SX is Noetherian. O

6.1. Noetherian Sober Spaces

Proposition 6.2 is crucial to our study. For the moment,

it at least motivates a deeper study of those spaces that ar

both Noetherian and sober.

Proposition 6.3 Every Noetherian sober spacéis stably
compact. Moreover, the upward-closed subsetX afoin-
cide with its saturated compacts.

Proof. X is trivially locally compact. SinceX itself is
open and Noetheriark is compact.X is sober by assump-
tion. It remains to show thaX is coherent. This will be

Recall that the sobrification &f is N U {+oo}, with opens

T n,n € N. We have already noticed that this was the upper

topology. Corollary 6.5 shows that this is no accident.
That X is both Noetherian and sober is essential. Note

also thatX itself is closed. Corollary 6.5 then implies that

X = | E for some finiteF; that is,X hasproperty T.

Definition 6.6 The quasi-ordered seX hasproperty Tiff
there is a finite subsdf of X such that every element &f
is less than or equal to some elemengbf

WhenX is Noetherian and sober, Corollary 6.5 also im-
plies that for everye,y € X, | = N | y, which is closed, is
ofthe form| FE, E finite. This is equivalent to the following
property, a dual of Jung’s property M [17, Definition, p.38]:

Definition 6.7 The quasi-ordered sef hasproperty Wiff,
for everyz,y € X, there is a finite subset’ of maximal
lower bounds of: andy, such that every lower bound of

€ :
andy is less than or equal to some elemengbf

Lemma 6.8 Let X be a Noetherian spaces its special-
ization quasi-ordering> its converse, anee be < N >.
Then < is well-founded: every infinite descending chain
o< ap < ... < x9 <z Stabilizes up tas, i.e., there is
an integerN such thatz;, = =y for everyk > N.

We prove the converse in Proposition 6.9 below. To this

a trivial consequence of the second part of the proposition,end, we need to define tiéoare quasi-orderibnggb on the
since every intersection of upward-closed subsets is agairSubsets of a seX quasi-ordered by<: E <’ E iff for

upward-closed. Let thereforé be upward-closed iX. So
Alis saturated, i.e4 is the filtered intersection of the family
(Ui);c; of all opens containingl. SinceX is Noetherian,
this is a family of saturated compacts. Sin&eis well-
filtered, its intersectiom is again saturated compact. O

Corollary 6.4 Let X be sober and Noetherian. Then the
cocompact topology o¥ is the Alexandroff topology of.

In particular, the topology oK is entirely determined by
its specialization quasi-ordering.

Corollary 6.5 Let X be sober and Noetherian. The topol-
ogy of X is the upper topology of its specialization quasi-
ordering <. Moreover, every closed subsetXfis finitary.

Proof. The closed subsets of, that is of X%¢, are the
saturated compacts df¢. By Corollary 6.4, the topology
of X< is the Alexandroff topology of>, so its saturated

everyx € E, thereis an’ € E’ such thatr < z’. Equiva-
lently, iff | E C | E’. Equating every finite subset with the
obvious finite multiset<" coincides with the multiset ex-
tension<™, It is well-known that (the strict part ofy™%

if well-founded as soon as is.

Proposition 6.9 Let < be a quasi-ordering orX. If <'is
well-founded and has property W, thé&his Noetherian in
its upper topology. Its closed subsets, except possihly
are finitary.

Proof. First, we show that{x) for every descending family
(I En),en» Where eachts,, is a finite subset o, there is
k € N such that), .y | En = | E,. Note that, since
| Eny1 C | E,, foreveryx € E, ., 1, thereisay € E,
such thatr < v, thatis,F,,.; <" E,. Then(x) follows
since<’=<™ul js well-founded.

We obtain: (+x) for every filtered family (| E;),.;,

compacts are its finitary compacts. These are exactly thewhere eacht; is finite, there is a finite subsét C X such

sets of the form| E, E finite. In other words, the closed
subsets ofX are exactly its finitary closed subsets.

| E; = | E. Indeed, assume the contrary. We
n € N, where each

that(,.;
then build a descending sequerjcé’

n?

Since all finitary closed subsets are closed in the upperE], is someE;, by induction onn € N. Let Ej be any

topology, the topology oK is coarser than the upper topol-
ogy. But the latter is the coarsest havid@s specialization
quasi-ordering. So the two topologies coincide. O

E;. AssumingE], has been built, for somee I we must
have| E|, Z | E;, otherwise(,.; | E; = | E],. Since
(I Ei);¢; is filtered, for some € I, | E; is contained in



L E, andin| E;: let £], , = Ej;. By construction, the Consider the continuous map= nx, X nx, : X1 X

chain(] EJ,),, oy is strictly decreasing, contradictirig). Xo — pt(Q(X7)) x pt(Q2(X2)). Let U any open sub-
The closed subsets in the upper topology are the (ar-set of X; x X,. Write U as|J,.; U} x UZ, where the
bitrary) intersections of subsets of the form E;, i € U}l's are open inX; and theU?'s are open inX,. By (x),

I, E; finite. The empty intersection i&. Each non- U = [J,¢; n;(}(OUil) X n;(;(OUiz) = i (Ujer Opr x
empty intersectioif),.; A; can be written as a filtered in- Oy ). Note that J,.; Oy1 x Opz is open inpt(£2(X1)) x
tersection of non-empty finite intersectionf),.; 4; = pt(©2(X2)). By Proposition 6.2pt(Q(X7)) andpt(Q(X2))
ﬂJg,Jﬂ, finite [ Jic.s Ai- By property W, every non-empty  are Noetherian. They are sober by construction. So by
finite intersectior(, ; | E; is of the form| £ for some Lemma 6.12pt(2(X1)) x pt(£2(X2)) is Noetherian, hence
finite subset;. By (+x), every filtered intersection of sub- | J;.; Oy x Opz is compact inpt(€2(X1)) x pt(Q(X2)).
sets of the form E; is again of the formi F, E finite. The family (Op1 x OU3>ief is an open cover of it. So there
So the closed subsets of thg upper topologyXofire is a finite subset, of I such thatl J,c; Oy x Opz =
exa_ctlythose of the fo_rnn E, EfmF_te,_p!us the Wh(_)le oiX. ~ User, Ovt % Opz. ThenU = fl(UieID Op1 x Ops) =
Taking complements i), every infinite ascending chain UieIo Ul 7'>< U2 |s a finite union of open rectqangles.l
SinceX; is NoetherianlJ! is compact, and similarly for

of opens stabilizes: by Proposition 3.2,is Noetherian.O

Lemma 6.10 Let< be a quasi-ordering oiX. If <iswell- U7, soU} x U} is compact inX; x X by the finite case
founded and has property W, then the irreducible closed of Tychonoff's Theorem. It follows thalt/, qua finite union
subsetsF’ of X are of the form| z, z € X, plus possi-  Of compacts, is also compact. 3@ x X, is NoetherianO
bly X itself. If X additionally has property T, then the only

irreducible closed sets are of the first kind. Corollary 6.14 Nthr is finitely complete.

iel

This finally allows us to characterize the Noetherian Proof. By Theorem 6.13, it has all finite products. We
sober spaces in terms of their specialization quasi-arderi  need only verify that it has all equalizers of parallel pairs
f.f' + X — Y. Their equalizer inTop is the subspace
Z ={z € X|f(z) = f'(x)} of X. Z is Noetherian by
Lemma 4.2, and clearly is an equalizeMNthr. O

Theorem 6.11 The Noetherian sober spaces are exactly
the spaces whose topology is the upper topology of a well-
founded partial order that has properties W and T.

Wh is Al droff-di . hi However,Nthr is not cartesian-closed. As a full sub-
enX is Alexandroff-discrete,S(.X) is isomorphic to category ofTop, the exponentiat’ ¥, if it exists in Nthr,

the_ ideal completion OfX,, Wit_h its Scott t_opology [20]. must be the space of continuous functi¢As — Y] from
Th|§ shows _f|rst_ that, wheiX' is well-quasi ordered, and {1y Take X — N andY — {0, 1} with the Alexan-
equipped with its Alexandroff t.o'pology, then the upper topologies of their natural orderings. Since applica
topology onS(X) is just the familiar Scott topology. Sec- tionapp : YX x X — Y is continuous in its first argument,

ond, this gives a more concrete descriptiorS¢X ) in this Ui = {f € YX|f(i) = 1} must be open i’ X for any
case: the elements 6f.X), i.e., the irreducible closed sub- € N. However, the chail/; C U, C ... C U; C ... is

setsF", are exactly the down-closed directed subse®of  jnfinite \We may complet&thr to a cartesian-closed cat-

egoryTopp, DY Standard constructions: by Day’s Theo-
rem [10, Theorem 3.6], the categdipp, of so-calledC-
generated spaces is cartesian-closed as so®isggoduc-
tive. The latter means that every spac€ is exponentiable

6.2. Cartesian Products

The product topologyon X; x X, is the coarsest that

makes the projections; : Xi x X — X; (i = 1,2) and the product ifCop of two spaces i is C-generated.
continuous. Thepen rectangles/; x Us, Ui open inX;, Taking C = Nthr fits: first, every Noetherian space is
U, open inX», form a basis of this topology. Theorem 6.11 |5c4jly compact, hence exponentiable; then the product
makes the following almost immediate. in Top of two Noetherian spaces is Noetherian (Theo-
Lemma 6.12 The productX; x X, of two Noetherian ~ ém 6.13), henc&thr-generated [10, Lemma 3.2 ()]. By
sober spaces is Noetherian and sober. [10, Lemma 3.2 (v)], theNthr-generated spaces are ex-

actly the (possibly infinite) colimits of Noetherian spaces
Theorem 6.13 The productX x ... x X, of n Noetherian
spacesXy, ..., X, is Noetherian. Its opens are dihite

unions of open rectangld$, x ... x U, (U; € Q(X;)). 7. A Noetherian Topology onlP(X )

Proof. By induction onn. The essential case is = 2. Let us deal with the so-called Hoare powerdomain con-
First, note that for every opdii of a spaceX, nx (z) € Oy struction first. For each topological spa&e let its Hoare
iff = € U. In particular:(x) ny" (Oy) = U. spaceH (X) (resp.,Hy(X)) be the space of all non-empty



closed subsets (resp., all closed subsetsY afith the up-

We have actually just shown th&(q) : Q(H(X)) —

per topology of theC ordering. It has subbasic open sets Q(P(X)) maps<¢O to |”* O. Recall thatQ)(q) is a frame

QU ={F € H(X)|FNU # 0}, U open inX.

homomorphism, and is therefore entirely determined by this

‘H(X) is used in denotational semantics to model angelic property. This is clearly a bijection, whose inverse is the

non-determinism. Note that the closure of an elenférd
H(X)isOF = H(X)\ O(F) = {F' € H(X)|F' C F},
and similarly iny(X). On finitary closed sets, £ C
| E'iff E <’ E’. The following is then immediate.

Proposition 7.1 For any Noetherian sober spacg, H(X)
andH,(X) are Noetherian and sober.

Theorem 7.2 For any Noetherian space(, H(X) and
Hy(X) are Noetherian.

Proof. Call basicopen set any finite intersection of subba-
sic opensOU. Every operi/ of H(X) is the union of the
basic openg’ contained in/. Fix a way of writing each

basic operV;, sayV; = ﬂjeJl OVij, whereJ; is finite. Let

Y, = Nje, ©Ov,,, and finallyZ/ be the union of allV;,
V; basic open contained . By construction, it/ C U/,
theni/ - U, For every ascending chain C Uy C ... C
U, C ...inH(X),ZZ C Zj{; Cc...C Zjl\k C ...isan
ascending chain ifH(pt(2(X))). So it stabilizes, using
Proposition 6.2, Proposition 7.1, and Proposition 3.2.

Recall thatny'(Oy) = U for every openU of X.
So OVi; = {F € H(X)|F nny'(Ov,) # 0} =
H(nx) '(COy,,), where H(nx) maps F € H(X)
to cl(nx(F)). Indeed, H(nx)_l(O(’)Vw) = {F €
H(X)|el(nx (F)) N Oy, # 0} = {F € H(X)nx(F)N
Oy, # 0} = {F € H(X)|F nnx'(Ov,) # 0}. So
Uu = H(nX)—l(LA{) for every open subséf of H(X). In
particular, the map( — U/ is injective.

Sincei{\l - Zj{; c ... C Zjl\k C ... stabilizes,if; C
U, C ... C U, C ... stabilizes, too. We conclude by
Theorem 3.2. The argument is similar & (X). O

This has the following surprising consequence:

Proposition 7.3 Let X be a topological space, with spe-
cialization quasi-ordering<. LetP(X) be the set of all
subsets (res®*(X) of all non-empty subsets) &f, quasi-
ordered by thetopological Hoare quasi-ordering”, de-
fined as: A <** Biff cl(A) C cl(B). EquipP(X), resp.
P*(X), with the corresponding upper topology.

If X is Noetherian, then so aif&(X) andP*(X).

Proof. Let="* be the equivalence relation induced ¥,
andg the quotient map. Up to homeomorphiskiX)/ =>*
is exactlyH(X), andg maps each subsetto c/(A). Note
thatq is continuous: the inverse image!(OU) is the set
of all subsetsA such thatcl(A) N U # 0, equivalently
cl(A) C U, equivalentlyA <** U, sinceU is closed. So
¢~ 1(<0) is open in the upper topology.

unique frame homomorphism mappig F to OF, for
each closed subsétof X. Every ascending chain of opens
01 C Oy C... C 0O C...of P(X) then induces an
ascending chain of opens &t(X) throughQ(q)~!. By
Theorem 7.2 and Proposition 3.2, the latter stabilizes. So
the former stabilizes, too. Hen&&X ) is Noetherian. O

Corollary 7.4 Let< be a well quasi-ordering oX . P(X)
andP*(X), with the upper topology of”, are Noetherian.

This is remarkable: in general® is not a well quasi-
ordering onP(X). The standard counterexample is Rado’s
example [24]. LetX g4, be the sef(m,n) € N?|m < n},
ordered by<pqdo: (m,n) <Rrado (M',n') iff m =m’ and
n < n',orn < m'. Itiswell-known that<z.q, is a well
quasi-ordering. Howevef{(X rado) = P(XRado) iS NOt
well quasi-ordered bgﬁ%do [5, Example 3.2].

A trivial consequence of this is th&t(X) andHy(X)
are in general not Alexandroff-discrete, even whéis. A
more important observation is that choosing the right topol
ogy (here, the upper topology) matters.

The Smyth space(X) usually models demonic non-
determinism; this is the set of non-empty compact saturated
subsets of, ordered by reverse inclusian, and equipped
with the corresponding Scott topology. The latter is gen-
erated by basic opersU = {Q € Q(X)|Q C U}, U
open inX, as soon asx is well-filtered and locally com-
pact. Contrarily toH(X), Q(X) is in general not Noethe-
rian: in X = H(XRrqa40), Which is not well quasi-ordered,
there is an infinite sequence of elemeits F», ... such
thatF; C F; fornos < j;thent Fy C 1 {F,F>} C ... C
14{Fy,...,Fx} C...is aninfiniteD-descending sequence
of elements ofQ(H (X rado)). This would be impossible if
the latter were Noetherian, by Lemma 6.8.

But consider the smaller s&?(X) of opens (remem-
ber that every open is compact), equipped with the upper
topology of D. Clearly, O(X) = Hy(X), by the home-
omorphism sending an open set to its complement. So by
Corollary 7.4,0(X) is Noetherian. Now note that ik
is Alexandroff-discrete, then opens coincide with finitary
compacts] E. EquipPy;,(X) with the upper topology
of the Smyth quasi-ordering®. It is easy to check that,
when X is equipped with the Alexandroff topology of a
well quasi-ordering<, the mapf that sends € Py;,, (X)
to 7 E € O(X) is a homeomorphism. Using this, the fact
thatO(X) = Hy(X), and Theorem 7.2, we get:

Proposition 7.5 Let < be a well quasi-ordering oX’, and
equipX with its Alexandroff topology. Théhy;, (X ), with
the upper topology of*, is Noetherian.



Again, this contrasts with the theory of well-quasi order-
ings. Rado’s example shows that is in general not a well
quasi-ordering ofP ¢, (X). Itis when< is w?-wqo [16].

8. Ring Spectra, and the Zariski Topology

Let R be a commutative ring. ThspectrumSpec(R)
of R is the set of all prime ideals of. It is equipped
with the Zariski topology whose closed subsets affg =
{p € Spec(R)|I C p}, wherel ranges over the ideals
of R. WhenR is the ring of polynomials{[X;, ..., X}]
over an algebraically closed field (e.g.,C), there is a

canonical one-to-one mapping frof to Spec(R), which

equates the pointvy, . .., v) of K" with the prime ideal
{P € R|P(v1,...,v;) = 0}. In this case, elements of
Spec(R) are points of the spao?k. In general, it is useful
to think of Spec(R) as a general notion of space of points.
Aring R is Noetherianiff every C-increasing sequence
of ideals inR is stationary; e.g.{[ X}, ..., X}] is Noethe-
rian for any fieldK. It is well-known that, for any Noethe-
rian ring R, Spec(R) is a Noetherian topological space
[13, corollaire 1.1.6].Spec(R) is always sober [13, corol-
laire 1.1.4, (ii)], withD as specialization ordering. By [13,
proposition 1.1.10, (i)], the sefpec(R)\ | (x) form a ba-
sis of the Zariski topology, whergr) is the (prime) ideal
generated byr € R, so that| (z) = {plp 2 (z)}
{p|z € p}. In particular, the Zariski topology coincides
with the upper topology, even whehis not Noetherian.
From a computer science perspective, the cAse-
K[Xy,..., X} is probably the most interesting, wifii an
algebraically closed extension of the fidid(e.g.,K = Q,
K = C). Recall thatSpec(R) is Noetherian in this case.
The elements ofpec(R) can be equated with elements of

K". The closed subsefg can be represented by providing
a Grobner basis for the polynomial idea[8, Section 11].
This Grobner basis is not unique: for any givefit depends
on the choice of a so-called admissible ordering of mono-
mials, and! itself is not determined uniquely; howevey
only depends on the radical ideall = {P ¢ R|3k >
1- P* € I} of I. Note that radical ideals, hence also the
closed subset$;, are in one-to-one correspondence with
affine varieties, i.e., with sets of common zeroes of polyno-
mials overK: this is Hilbert's Nullstellensatz [25].

Now considempolynomial automataver K, i.e., pairs
A = (Q,0), where@ is a finite set ofstates R =
K[Xi1,...,Xg), and§d C Q x Ppin(R) x R¥ x Q
is the transition relation. The intent is to model pro-
grams overk variables taking values i, and with
polynomial operations. The semantics 4f is an infi-
nite state transition system, whosenfigurationsare tu-

ples(q,v1,...,vx) € Q X Fk, and valid transitions are
of the form (q,v1,...,vx) — (¢, Pi(v1,...,0k),.--,

Py(vy,...,v)), where(q, E,(Py,...,Px),q) € § and
P(vy,...,vx) = 0foreveryP € E. The E part models
guards, testing equality between polynomial expressions,
and the(Px,..., Py) part models variable updates. E.g.,
the program fragmentf 3X? = X, — 1 A X1 X, =

X3 then (Xl = X12 — 2X3 +X2;X2 = X3 + 1), in ML-

like syntax, would be described with = {3X? — X, +
1L,X1 Xy — X3}, P = X2 —2X5+ Xy, P, = X5 +1,

P; = X3. Equip?k with the Zariski topology, obtained
through the one-to-one correspondence betwE&nand
Spec(R). Itis easy to see that the binary relatienis up-

per semi-continuous. This is becalde” (—)(F;) = F,
wherel” =, g.(p......po).qes(B) N{P o (Pr,..., Py)

|P € I}, and(E) is the ideal generated k. This is easily
computed using Grobner bases whén= Q. This was ex-
plored by Muller-Olm and Seidl in a very nice paper [22],
and we refer the reader to this for missing details and a gen-
tler introduction. We leave it as future research to explore
the application of other Noetherian rings to computer verifi
cation problems; also, the use of more complex Noetherian
spaces such &pec(K[X1, ..., Xi]) x N?, modeling pro-
grams withk variables inK andp integer variables.

9. A New Data Structure for Coverability?

Consider the following argument. Start from a Noethe-
rian spaceX, e.g.,N* with its Alexandroff topology (this
is the space of markings of a Petri net). By Proposition 6.2,
S(X) is Noetherian. By Corollary 6.5, its opens are exactly
the finitary closed subsets £, F C S(X). We equate
X with a subspace of(X), i.e., we equate € X with
nx(z) € S(X). For instanceS(N*) = (NU {+oo})*, as
we have seen. Now the topology &f is exactly the topol-
ogy induced onX by that ofS(X), so we have a way of rep-
resenting all opens oX using a finite sef of elements of
S(X), asthe complementiX of X N | E. Thisis clearon
N*: for example, withc = 3, we may represent the upward-
closed set (open it3) 1 {(2,3,5)} as the complement of
X N | A{(1, 400, +00), (+00, 2, +00), (+00, +00,4) }.

This is completely general: we caaways represent
opens of Noetherian spacés as complements of sets of
the formX N | E, E a finite subset o§(X). This is im-
portant for those Noetherian spaces, eR(.X), that do
not arise from well quasi-orderings, and where opens can-
not be represented dsF (E finite C X). Even on well
quasi-ordered spaces suchN{g this may provide an al-
ternate representation of sets of the fome® (V) or
I[F]sp. E.g., onN*, when§ is the transition relation of
a Petri net (taken as a finite set of rewrite rutés — 7i;,

1 < i < ¢, of vectors inN*, wherem,,; € NF), we
may computePre’d(X N | E) = Pre"s(XN | E) and



Prevé(X N|E)= Preaé(Xﬂ | E) by the formulae: [5] P. A. Abdulla and A. Nylén. Better is better than well: On
efficient verification of infinite-state systems. 1dth LICS
Preaé(X NIE) = XNl {p+m—,; pages 132-140, 2000. _ _
. . L [6] P. A. Abdulla and A. Nylén. Timed Petri nets and bqos.
| peE1<i<l-p>ii} In 22nd Int. Conf. Applications and Theory of Petri Nets

¢ (ICATPN) pages 53-70. Springer Verlag LNCS 2075, 2001.
Prevé(X NIE) = Xn ﬂ (ET m; U {p+m; —; [7]1 S. Abramsky and A. Jung. Domain theory. Htandbook of
i=1 Logic in Computer Sciencgolume 3, pages 1-168. Oxford
. e - U. Press, 1994.
|peE -p> ”v}) [8] B. Buchberger and R. Loos. Algebraic simplification. In
B. Buchberger, G. E. Collins, R. Loos, and R. Albrecht, edi-
(We leave the computation of finite unions and intersections tors, Computer Algebra, Symbolic and Algebraic Computa-
of sets of the form| E, and of the complemerti] 17, of tion. Springer Verlag, 1982-83. _ _
1 m; in S(X), as an exercise to the reader.) [9] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic

algorithms for infinite-state games. 12th CONCURpages
536-550. Springer Verlag LNCS 2154, 2001.
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