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Abstract

A topological space isNoetherianiff every open is com-
pact. Our starting point is that this notion generalizes that
of well-quasi order, in the sense that an Alexandroff-discrete
space is Noetherian iff its specialization quasi-orderingis
well. For more general spaces, this opens the way to ver-
ifying infinite transition systems based on non-well quasi
ordered sets, but where the preimage operator satisfies an
additional continuity assumption. The technical develop-
ment rests heavily on techniques arising from topology and
domain theory, including sobriety and the de Groot dual of
a stably compact space. We show that the categoryNthr

of Noetherian spaces is finitely complete and finitely cocom-
plete. Finally, we note that ifX is a Noetherian space, then
the set of all (even infinite) subsets ofX is again Noethe-
rian, a result that fails for well-quasi orders.

1. Introduction

A topological spaceX is Noetherianiff every open sub-
set ofX is compact [13, chapitre 0, § 2]. We shall explain
how this generalizes the theory of well quasi-orders.

Recall that a well quasi-ordering is a quasi-ordering
(a reflexive and transitive relation) that is not only well-
founded, i.e., has no infinite descending chain, but also has
no infinite antichain (a set of incomparable elements). One
use of well quasi-orderings is in verifyingwell-structured
transition systems[2, 4, 11, 14]. These are transition sys-
tems, usually infinite-state, with two ingredients.

First, a well quasi-ordering≤ on the
set X of states. Second, the transi-
tion relationδ commutes with≤, i.e.,
if x δ y andx ≤ x′, then there is a
statey′ such thatx′ δ y′ andy ≤ y′:

x ≤ //

δ

��

x′

δ

��

y ≤ // y′

(1)

Examples include Petri nets, VASS [15], lossy channel sys-
tems [3], timed Petri nets [6] to cite a few.

∗Partially supported by the INRIA ARC ProNoBis.

For any subsetA of X, let Pre∃δ(A) be the preimage
{x ∈ X|∃y ∈ A · x δ y}. The commutation property
ensures that the preimagePre∃δ(V ) of any upward-closed
subsetV is again upward-closed (V is upward-closed iff
wheneverx ∈ V and x ≤ x′, thenx′ ∈ V ). Standard
arguments then show that one may computePre∃∗ δ(V ),
the set of states inX from which we can reach some state
in V in finitely many steps: Compute the setVi of states
from which we can reach some state inV in at mosti steps,
backwards, byV0 = V , Vi+1 = Vi ∪ Pre∃ δ(Vi): this
stabilizes at some stagei, whereVi = Pre∃∗ δ(V ).

This provides an algorithm for coverability: given two
statesx, x′ ∈ X, is there a tracex = x0 δ x1 δ . . . δ xk

such thatx′ ≤ xk? Just checkx ∈ Pre∃∗(↑ x′), where↑ x′

is the upward-closed set{y ∈ X|x′ ≤ y}.

Outline. We generalize this by replacing quasi-
orderings by topologies. We shall definitely rest on the
rich relationship between theories of order and topology.
We recapitulate what we need in two sections, Section 2
for basic notions, and Section 5 for more advanced con-
cepts such as Stone duality, sobriety, and stable compact-
ness which we don’t need in earlier sections. The Zariski
topology on spectra of Noetherian rings was the first known
Noetherian topology; we discuss it only in Section 8, in the
light of the rest of our paper. Our contribution occupies the
other sections. We first show the tight relationship between
well-quasi orders and Noetherian spaces in Section 3, and
show a few easy constructions of new Noetherian spaces
from given Noetherian spaces in Section 4. This culminates
in showing that the categoryNthr of Noetherian spaces
is finitely cocomplete. Section 6 is technically more chal-
lenging, and characterizes those Noetherian spaces that are
also sober. This is the cornerstone of the theory. E.g., this
is instrumental to show thatNthr is finitely complete, and
that the Hoare space of a Noetherian space is again Noethe-
rian. We show the latter in Section 7. We then prove the
unexpected result that the set ofall subsets of a Noetherian
spaceX (even infinite ones) has a topology that makes it
Noetherian. This would be wrong in a pure theory of or-
ders; topology makes the difference. Finally, our theory of
Noetherian sober spaces suggests an alternative algorithm



for coverability based on computing downward-closed sets,
which we describe in Section 9. We conclude in Section 10.

We stress that this paper is not specifically geared to-
wards applications. Its aim is rather to lay the theoretical
basis for Noetherian topological spaces.

Related Work. If ≤ is a quasi-ordering onX then let
Pfin(X) be the set of finite subsets ofX, and order it by≤♯,
whereA ≤♯ B iff for every y ∈ B there is anx ∈ A such
thatx ≤ y. It is well-known that≤♯ needs not be well even
when≤ is well. This is a shortcoming, among others, of
the theory of well quasi-orderings. Such shortcomings led
Nash-Williams [23] to invent better quasi-orderings (bqos).
Bqos have a rather unintuitive definition but a wonderful
theory, see [19]. The only application of bqos we know of to
verification problems is by Abdulla and Nylén [5], where it
is used to show the termination of the backward reachability
iteration, usingdisjunctiveconstraints.

This paper is not on bqos, and in fact not specifically
on well quasi-orderings. While bqos arerestrictionsof well
quasi-orderings, Noetherian spacesgeneralizethe latter. We
hope that Noetherian spaces will be valuable in verifica-
tion in the future. The fact thatPfin(X), with the upper
topology of≤♯, and thatP(X), with another topology, are
Noetherian wheneverX is (Section 7) is a promising result.

Our work is more connected to topology, and in partic-
ular to topology as it is practiced in domain theory. As we
shall see later, the notions of specialization quasi-ordering
of a topological space, of upper, Scott and Alexandroff
topologies, of sober space, of sobrification of a space, and
of stably compact spaces are central to our work. Topology
and domain theory form another wonderful piece of mathe-
matics, and one may consult [12, 7, 18, 21].

Last but not least, Noetherian spaces arise from algebraic
geometry [13]: we discuss this briefly in Section 8.

2. Preliminaries I: Order and Topology

A topologyO on a setX is a collection of subsets (the
opens) of X that is closed under arbitrary unions and finite
intersections. We say thatX itself is a topological space,
leavingO implicit. The complements of opens areclosed.
The largest open contained inA is its interior, the smallest
closed subsetcl(A) containing it is itsclosure.

Every topology comes with aspecialization quasi-
ordering≤, defined asx ≤ y iff every open that contains
x also containsy. Equivalently,x ∈ cl{y}. It is easy to
see that every open is upward-closed with respect to≤. The
converse need not hold. A subsetA of X is saturatediff A
equals the intersection of all opensU containingA, equiva-
lently iff it is upward-closed with respect to≤.

A subsetK of X is compactiff every open cover(Ui)i∈I

contains a finite subcover. Alternatively,K is compact
iff, for every directed family(Ui)i∈I of opens such that

K ⊆ ⋃
i∈I Ui, thenK ⊆ Ui for somei ∈ I already. (A

family (xi)i∈I of elements quasi-ordered by≤ is a non-
empty family such that for everyi, j ∈ I there isk ∈ I
such thatxi ≤ xk andxj ≤ xk.)

Write ↑ E = {x ∈ X|∃y ∈ E · y ≤ x}, ↓ E = {x ∈
X|∃y ∈ E · x ≤ y}. If K is compact, then↑ K is, too,
and is also saturated. We shall usually reserve the letterQ
for saturated compacts. WhenE is finite, ↑ E is compact
saturated: call these thefinitary compacts. Similarly,↓ E is
closed: call these thefinitary closed subsets.

We have gone one direction, from topology to quasi-
orderings. There are in general many return paths. The
finest topology having≤ as specialization quasi-ordering is
the Alexandroff topologyof ≤. Its opens are the upward-
closed subsets ofX with respect to≤. The coarsest is
the upper topology, generated by the complements of sets
↓ {x}, x ∈ X. Its closed sets are the unions of subsets
of the form↓ E, E finite. An intermediate topology is the
Scott topology, whose opens are those upward-closed sub-
setsU such that every directed family(xi)i∈I that has a
least upper bound inU meetsU . The latter crops up in do-
main theory, where acpo is a partially ordered set where
every directed family has a least upper bound.

A topological space isAlexandroff-discreteiff every in-
tersection of opens is again open. Equivalently, iff its topol-
ogy is the Alexandroff topology of its specialization quasi-
ordering. While every finitary compact is compact satu-
rated, the converse holds in Alexandroff-discrete spaces.

A map f from X to Y is continuousiff f−1(V ) is
open inX for every openV of Y . Any continuous func-
tion is monotonic with respect to the specialization quasi-
orderings ofX and Y . The converse holds whenX
is Alexandroff-discrete: while continuity is usually seen
as stronger than monotonicity, continuity alsogeneralizes
monotonicity, in the sense that monotonicity is just conti-
nuity with respect to Alexandroff topologies.

When X and Y are equipped with Scott topologies,
f : X → Y is continuous ifff is Scott-continuous, i.e.,
f is monotonic and, for every directed family(xi)i∈I in X
having a least upper boundx, the family(f(xi))i∈I (which
is directed inY ) admitsf(x) as least upper bound. Conti-
nuity notions extend to binary relations. A relationR from
X to Y is a subset ofX×Y . It is lower semi-continuousiff
Pre∃R(V ) = {x ∈ X|∃y ∈ V · x R y} is open whenever
V is. It is upper semi-continuousiff Pre∀R(V ) = {x ∈ X|
∀y · x R y ⇒ y ∈ V } is open wheneverV is.

3. Well-Quasi Orders and Noetherian Spaces

We first relate well-quasi orders and Noetherian spaces.

Proposition 3.1 Consider the following properties of a
topological spaceX, with specialization quasi-ordering≤:
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1. X is Noetherian;
2. X is a space where every open is finitary compact;
3. ≤ is a well quasi-ordering.
Then 3 implies 2, 2 implies 1, and if X is Alexandroff-
discrete then1 implies3.

Proof. 3 ⇒ 2: Every open is upward-closed, and ev-
ery upward-closed subset is finitary compact by assump-
tion. 2 ⇒ 1 is obvious. Let us show1 ⇒ 3, assumingX
Alexandroff-discrete. Each upward-closed subset is open,
hence compact saturated by1, hence finitary compact since
X is Alexandroff-discrete. ⊓⊔
This allows us to claim that Noetherian spaces are exactly
the topological counterpart of the order-theoretic notionof
well quasi-order. In particular, there are many Noetherian
spaces: equip any well quasi-ordered setX with its Alexan-
droff topology. As we shall see, there are others.

The following well-known characterization of Noethe-
rian spaces will be useful. LetΩ(X) be the set of all opens
of X, ordered by inclusion. A setY with a quasi-ordering
⊑ has theascending chain conditioniff every infinite as-
cending chainy0 ⊑ y1 ⊑ . . . ⊑ yk ⊑ . . . stabilizes, i.e.,
there is an integerN such thatyk ⊑ yN for everyk ≥ N .

Proposition 3.2 Let X be a topological space. ThenX is
Noetherian iffΩ(X) has the ascending chain condition.

The backward computation ofPre∃∗ of the introduction
extends easily, as follows. Let atopological well-structured
transition systembe a pair(X, δ), whereX, thestate space,
is a Noetherian space, andδ, thetransition relation, is lower
semi-continuous. Then again, the sequence of backward
iteratesVi terminates, by Proposition 3.2:

Proposition 3.3 Let (X, δ) be a topological well-
structured transition system. For any open subsetV , let
V0 = V , Vi+1 = Vi ∪ Pre∃ δ(Vi). The sequence(Vi)i∈N

is

an ascending chain, which stabilizes onPre∃∗(V ).

We retrieve that backwards iterations terminate on well-
structured transition systems (a well-known fact), because:

Proposition 3.4 Each well-structured transition system
(X, δ) is a topological well-structured transition system.
The converse holds whenX is Alexandroff-discrete.

Write A for the complement ofA. Note that

Pre∀δ(A) = Pre∃δ(A), that complements of upward-

closed sets are downward-closed,
and conversely. So, again whenX
is Alexandroff-discrete,δ is upper
semi-continuous iff the dual of Dia-
gram (1) holds:

x ≤ //

δ

��

x′

δ

��

y ≤ // y′

(2)

One may then go a bit further than just reachability. De-
fine the following negation-free fragment of the modalµ-
calculus. LetL = Lmust∪Lmay be a finite set oftransition

labels, taken as the (not necessarily disjoint) union of two
subsets ofmust labelsandmay labelsrespectively. LetA
be a recursive set of so-calledatomic formulae.

F ::= A atomic formula(A ∈ A)
| X variable
| ⊤ true
| F ∧ F conjunction
| ⊥ false
| F ∨ F disjunction
| [ℓ]F box modality(ℓ ∈ Lmust)
| 〈ℓ〉F diamond modality(ℓ ∈ Lmay)
| µX · F least fixed point

Formulae are interpreted in aKripke structure I =
(X, (δℓ)ℓ∈L, (UA)A∈A), whereX is a topological space,δℓ

is a binary relation onX, which is lower semi-continuous
when ℓ ∈ Lmay and upper semi-continuous whenℓ ∈
Lmust, andUA is an open ofX for every atomic formula
A. An environmentρ maps variablesX to opens ofX.
Define the satisfaction relationx |=I

ρ F as usual. In par-
ticular, x |=I

ρ [ℓ]F iff for every statey such thatx δℓ y,
y |=I

ρ F ; x |=I
ρ 〈ℓ〉F iff for some statey such thatx δℓ y,

y |=I
ρ F ; andx |=I

ρ µX ·F iff x ∈ ⋃+∞
i=0 Ui, whereU0 = ∅,

Ui+1 = {z ∈ X|z |=I
ρ[X:=Ui]

F}; ρ[X := U ] is the envi-
ronment mappingX to U , and everyY 6= X to ρ(Y ).

Let lfp be the least fixed point operator of Scott-
continuous functionsf : lfp(f) =

⋃+∞
i=0 f i(∅), and write

I JF Kδ ρ for the set of elementsz ∈ Z such thatz |=I
ρ F .

The semantics of formulae is characterized by the clauses:

I JAKδ ρ = UA I JXKδ ρ = ρ(X)
I J⊤Kδ ρ = X I JF1 ∧ F2Kδ ρ = I JF1Kδ ρ ∩ I JF2Kδ ρ
I J⊥Kδ ρ = ∅ I JF1 ∨ F2Kδ ρ = I JF1Kδ ρ ∪ I JF2Kδ ρ

I J[ℓ]F Kδ ρ = Pre∀δℓ(I JF Kδ ρ)

I J〈ℓ〉F Kδ ρ = Pre∃δℓ(I JF Kδ ρ)
I JµX · F Kδ ρ = lfp(λU ∈ Ω(X) · I JF Kδ (ρ[X := U ]))

An easy structural induction onF then shows thatI JF Kδ ρ
is always open.

WhenX is Noetherian, the above formulae describe an
obvious algorithm for computingI JF Kδ ρ. The only non-
trivial case is for formulae of the formµX · F . However,
we may computelfp(f) for any Scott-continuous function
f : Ω(X) → Ω(X) (in fact for any monotonicf : whenX is
Noetherian, every monotonicf : Ω(X) → Ω(X) is Scott-
continuous) by:U0 = ∅, Ui+1 = f(Ui); this defines an as-
cending chain, which stabilizes by Proposition 3.2. We need
to detect when this stabilizes, and so we require the inclu-
sion relation to be decidable. Note that by Proposition 3.1,
every openU can be represented as a finitary compact↑ E,
that is, as a finite list of elements. Clearly,↑ E ⊆ ↑ E′ iff
E′ ≤♯ E, i.e., for everyx ∈ E, there is ay ∈ E′ such that
y ∈ x. The quasi-ordering≤♯ is usually called theSmyth
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quasi-ordering, and is decidable as soon as≤ is. (I.e., each
elementx ∈ X has a unique codepxq ∈ {0, 1}∗, and≤ is
a computable binary predicate on codes.) Assume thatUA

andρ(X) are specified by given finite setsEA andE′
X , i.e.,

UA = ↑ EA andρ(X) = ↑ E′
X . We obtain:

Theorem 3.5 Let X be a Noetherian space, and assume
that its specialization quasi-ordering≤ is recursive. As-
sume thatδℓ is recursive, in the sense that for any finite sub-
setE ofX, we can compute a finite subsetE′ ofX such that
Pre∃δ(↑ E) = ↑ E′ (ℓ ∈ Lmay) andPre∀δ(↑ E) = ↑ E′

(ℓ ∈ Lmust). LetUA, ρ(X) be specified by given finite sets.
Then there is an algorithm which, given a formulaF ,

computes a finite setE of elements such thatI JF Kδ ρ =
↑ E. In particular, checking whetherx |=I

ρ F is decidable.

When ℓ ∈ Lmay, computingPre∃∗δℓ(V ) is a spe-
cial case of the above evaluation scheme for formulae:
Pre∃∗δℓ(V ) = I JµX · A ∨ 〈ℓ〉XKδ ρ, whereρ is arbitrary
and UA = V . One may also evaluate some forms of
monotonic games [1, 9]: readingδℓ1 as the transition re-
lation for player1, andδℓ2 as that for player2, the formula
µX · A ∨ 〈ℓ1〉(B ∧ [ℓ2]X) is true exactly at those states
x0 such that player1 has a strategy to win (reach the open
UA while preventing player2 from reachingUB), whatever
player2’s moves.

4. Easy Constructions of Noetherian Spaces

We know that every well quasi-ordering yields a Noethe-
rian space, through its Alexandroff topology. For exam-
ple, N, Nk with the componentwise ordering (Dickson’s
Lemma), the set of finite words over a well-quasi-ordered
alphabet, ordered by embedding (Higman’s Lemma), the set
of finite labelled trees over a well-quasi-ordered signature,
ordered by embedding (Kruskal’s Theorem). We describe
more constructions of new Noetherian spaces from old, and
start with some easy ones. We shall consider finite products
in Section 6.2 only; this is harder.

The first observation is similar to the fact that, for every
well quasi-ordering≤, any quasi-ordering≤′ such thatx ≤
y impliesx ≤′ y is also a well quasi-ordering.

Lemma 4.1 Every topology coarser than a Noetherian
topology is Noetherian.

So for example, if≤ is a well quasi-ordering, then its Scott
topology and its upper topology are Noetherian topologies.
Every topological space with finitely many opens is also
trivially Noetherian. This includes the case of finite spaces.

Recall that asubspaceY of a topological spaceX is a
subset ofX whose topology is given by the intersections of
opens ofX with Y —the inducedtopology.

Lemma 4.2 Every subspace of a Noetherian space is
Noetherian.

Proof. Let U1 ∩ Y ⊆ U2 ∩ Y ⊆ . . . ⊆ Uk ∩ Y ⊆
. . . be an ascending chain of opens inY . The open subset
U =

⋃+∞
i=1 Ui of X is compact, sinceX is Noetherian.

So for someK, U ⊆ ⋃K
i=1 Ui. It follows thatU ∩ Y ⊆⋃K

i=1 Ui∩Y = UK ∩Y , henceUk ∩Y ⊆ UK ∩Y for every
k ≥ 1. We conclude by Proposition 3.2. ⊓⊔

ThecoproductX1+ . . .+Xk of k spaces is their disjoint
union. Its opens are disjoint unions of opens, one from each
Xi, i.e.,Ω(X1 + . . . + Xk) ∼= Ω(X1) × . . . × Ω(Xk).

Lemma 4.3 The coproduct of finitely many Noetherian
spaces is Noetherian.

Being Noetherian is also preserved under direct images:

Lemma 4.4 Let q : X → Z be a surjective continuous
map. IfX is Noetherian then so isZ.

Given an equivalence relation≡ on a topological space
X, thequotient spaceX/≡ is the set of equivalence classes
of ≡, topologized by taking the finest topology that makes
the quotient mapq≡ : X → X/≡ continuous, whereq≡
mapsx ∈ X to its equivalence class.

Corollary 4.5 LetX be a Noetherian space,≡ an equiva-
lence relation onX. ThenX/≡ is Noetherian.

Let Nthr be the category of Noetherian spaces and con-
tinuous maps. In other words,Nthr is the full subcategory
of Top (the category of topological spaces) consisting of
Noetherian spaces.

Corollary 4.6 Nthr is finitely cocomplete.

Proof. It is enough to show that it has all finite coproducts
(Lemma 4.3), and all coequalizers of parallel pairsf, f ′ :
X → Y . Such a coequalizer exists inTop, and is given by
Y/≡, where≡ is the smallest equivalence relation such that
f(x) ≡ f ′(x) for all x ∈ X. Now apply Corollary 4.5. ⊓⊔

5. Preliminaries II: Sober Spaces

The material we shall now need is more involved, and
can be found in [12, 7, 21] and in [18].

Stone Duality. For every topological spaceX, Ω(X) is a
complete lattice. Every continuous mapf : X → Y defines
a functionΩ(f) : Ω(Y ) → Ω(X), which maps every open
subsetV of Y to Ω(f)(V ) = f−1(V ). The mapΩ(f) pre-
serves all least upper bounds (unions) and all finite greatest
lower bounds (finite intersections), i.e. it is aframe homo-
morphism. Letting CLat be the category of complete lat-
tices and frame homomorphisms,Ω defines a functor from
Top to CLatop, the opposite category ofCLat.
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A frame is any complete lattice that obeys the infinite
distributivity law x ∧ ∨

i∈I xi =
∨

i∈I(x ∧ xi). Let Frm

be the category of frames. Its opposite categoryLoc =
Frmop is the category oflocales.

Going the other way around is known asStone dual-
ity. A filter F on a complete latticeL is a non-empty
upward-closed family of elements ofL, such that whenever
x, y ∈ F , the greatest lower boundx ∧ y is also inF . F is
completely primeiff for every family M ⊆ L whose least
upper bound

∨
M is in F , then some element ofM is al-

ready inF . A pointof L is by definition a completely prime
filter of L. Letpt(L) be the set of points ofL. Topologize it
by defining its opens as the setsOx = {F ∈ pt(L)|x ∈ F},
x ∈ L. One may check that this is indeed a topology [7,
Proposition 7.1.13]. Moreover,pt defines a functor from
CLatop to Top, and by restriction, fromLoc to Top.

ThenΩ is left adjoint topt, in notationΩ ⊣ pt. This
means that there are natural transformationsηX : X →
pt(Ω(X)) (theunit of the adjunction) andǫL : Ω(pt(L)) →
L (thecounitof the adjunction) such thatǫΩ(X) ◦Ω(ηX) =
idΩ(X) andpt(ǫL) ◦ ηpt(L) = idpt(L). Explicitly, ηX(x) is
the completely prime filter of all open neighborhoods ofx
in X, andǫL mapsz ∈ L to the open setOz.

Sober Spaces.The spacept(Ω(X)) is called thesobri-
ficationof X. One may understand this as noticing that (at
least ifX is aT0 space, i.e., when its specialization quasi-
ordering is a partial ordering)ηX is an embedding ofX into
pt(Ω(X)), so thatpt(Ω(X)) is obtained fromX by adding
elements, viz. those points ofΩ(X) that are not of the form
ηX(x), x ∈ X. The spacept(Ω(X)) is thensober: a sober
space is aT0 space in which every irreducible closed set is
the closure of a unique point. A closed setC is irreducible
iff it is not empty, and if there are two closed setsC1 and
C2 such thatC ⊆ C1 ∪ C2 thenC ⊆ C1 or C ⊆ C2.

One shows thatηX is injective iff X is T0, and addition-
ally surjective iff X is sober. Equivalently,X is sober iff
X is homeomorphic topt(L), for some complete latticeL,
iff X ∼= pt(Ω(X)), iff ηX is bijective (in which case it is
automatically a homeomorphism).

The explicit description ofpt(Ω(X)) of X is relatively
uninteresting. We have already said thatpt(Ω(X)) was a
form of completion ofX, where we add elements. A cru-
cial point is that this completion adds elementsbut no new
opens: then opens ofpt(Ω(X)) are of the formOU , one for
each open subsetU of X. Alternatively, the specialization
quasi-ordering≤ of a sober space turns it into a cpo. I.e.,
the pt ◦ Ω construction formally adds all missing directed
least upper bounds. One may for example check that the
sobrification ofN (with the Alexandroff topology of its nat-
ural ordering) is, up to homeomorphism,N ∪ {+∞} with
non-empty open subsets↑ n, n ∈ N. (Exercise: This is both
the Scott and the upper topology onN ∪ {+∞}.)

Up to homeomorphism, there is a simpler way of de-

scribing the sobrification ofX [12, Chapter V, Exer-
cise 4.9], as the spaceS(X) of all irreducible closed sub-
sets ofX, with open subsets given by3U = {F irreducible
closed|F ∩ U 6= ∅}, for each open subsetU of X. Its spe-
cialization quasi-ordering is just inclusion. Up to this home-
omorphism, the unitηX can be seen as a function fromX
to S(X) that mapsx ∈ X to the irreducible closed set↓ x.

Stably Compact Spaces.Sober spaces arewell-filtered
[18, Definition 2.7]: for every open subsetU , for ev-
ery filtered family(Qi)i∈I of saturated compacts such that⋂

i∈I Qi ⊆ U , there is ani ∈ I such thatQi ⊆ U . (A fam-
ily is filtered provided it is directed in the converse order-
ing ⊇.) This is a consequence of the celebrated Hofmann-
Mislove Theorem [7, Theorem 7.2.9].

Say that a topological spaceX is coherentiff the inter-
section of two saturated compacts is compact.X is locally
compactiff every element has a basis of saturated compact
neighborhoods. That is, wheneverx ∈ U with U open,
there is a saturated compactQ such thatx is in the inte-
rior of Q, andQ ⊆ U . A stably compact spaceis a sober,
coherent, locally compact and compact space.

Let X be a stably compact space. One may show that
the complements of saturated compacts ofX form a new
topology, the so-calledcocompact topology. Write Xd for
X under its cocompact topology: this is thede Groot dual
of X. ThenXd is again stably compact, andXdd = X
[18, Corollary 2.13]. Moreover, the specialization quasi-
ordering ofXd is the converse≥ of ≤.

6. More Constructions of Noetherian Spaces

Let CCCLat be the full subcategory ofCLatop con-
sisting of complete lattices (resp.,Loccc the full subcate-
gory of Loc consisting of frames) that satisfy the ascend-
ing chain condition. Proposition 3.2 states thatΩ induces a
functor fromNthr to CCCLat, and toLoccc.

Lemma 6.1 The functor pt induces a functor from
CCCLat (resp.,Loccc) to Nthr, right adjoint toΩ.

Proof. Let us show thatpt is a functor fromCCCLat,
resp.Loccc, to Nthr. This boils down to the fact that for
every complete latticeL with the ascending chain condition,
pt(L) is Noetherian. By Proposition 3.2, it suffices to show
that every ascending chainOx1

⊆ Ox2
⊆ . . . ⊆ Oxk

⊆ . . .
stabilizes. Note thatOx ⊆ Oy iff x ≤ y: the if di-
rection is clear; conversely, ifOx ⊆ Oy, then the fil-
ter ↑ x is completely prime, belongs toOx, so it belongs
to Oy, i.e., y ∈ ↑ x, that is, x ≤ y. It follows that
x1 ≤ x2 ≤ . . . ≤ xk ≤ . . . is an ascending chain inL.
So it stabilizes. ⊓⊔

Sobrification preserves the property of being Noetherian:
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Proposition 6.2 A spaceX is Noetherian iff its sobrifica-
tion pt(Ω(X)) ∼= S(X) is Noetherian.

Proof. If X is Noetherian, then so ispt(Ω(X)), because
Ω is a functor fromNthr to Loccc, andpt is one from
Loccc to Nthr (Lemma 6.1). SoS(X) ∼= pt(Ω(X)) is
Noetherian, too. Conversely, assumeS(X) is Noetherian,
and letU1 ⊆ U2 ⊆ . . . ⊆ Uk ⊆ . . . be an infinite ascending
chain inX. Then3U1 ⊆ 3U2 ⊆ . . . ⊆ 3Uk ⊆ . . . is an
infinite ascending chain inS(X), so it stabilizes: for some
N ∈ N, for everyk ≥ N , 3Uk ⊆ 3UN . For everyx ∈ Uk,
↓ x is in 3Uk, so it is in 3UN , thereforex ∈ UN . So
Uk ⊆ UN , showing that the ascending chainU1 ⊆ U2 ⊆
. . . ⊆ Uk ⊆ . . . also stabilizes. SoX is Noetherian. ⊓⊔

6.1. Noetherian Sober Spaces

Proposition 6.2 is crucial to our study. For the moment,
it at least motivates a deeper study of those spaces that are
both Noetherian and sober.

Proposition 6.3 Every Noetherian sober spaceX is stably
compact. Moreover, the upward-closed subsets ofX coin-
cide with its saturated compacts.

Proof. X is trivially locally compact. SinceX itself is
open and Noetherian,X is compact.X is sober by assump-
tion. It remains to show thatX is coherent. This will be
a trivial consequence of the second part of the proposition,
since every intersection of upward-closed subsets is again
upward-closed. Let thereforeA be upward-closed inX. So
A is saturated, i.e.,A is the filtered intersection of the family
(Ui)i∈I of all opens containingA. SinceX is Noetherian,
this is a family of saturated compacts. SinceX is well-
filtered, its intersectionA is again saturated compact. ⊓⊔

Corollary 6.4 Let X be sober and Noetherian. Then the
cocompact topology onX is the Alexandroff topology of≥.

In particular, the topology ofX is entirely determined by
its specialization quasi-ordering.

Corollary 6.5 Let X be sober and Noetherian. The topol-
ogy ofX is the upper topology of its specialization quasi-
ordering≤. Moreover, every closed subset ofX is finitary.

Proof. The closed subsets ofX, that is ofXdd, are the
saturated compacts ofXd. By Corollary 6.4, the topology
of Xd is the Alexandroff topology of≥, so its saturated
compacts are its finitary compacts. These are exactly the
sets of the form↓ E, E finite. In other words, the closed
subsets ofX are exactly its finitary closed subsets.

Since all finitary closed subsets are closed in the upper
topology, the topology ofX is coarser than the upper topol-
ogy. But the latter is the coarsest having≤ as specialization
quasi-ordering. So the two topologies coincide. ⊓⊔

Recall that the sobrification ofN is N ∪ {+∞}, with opens
↑ n, n ∈ N. We have already noticed that this was the upper
topology. Corollary 6.5 shows that this is no accident.

ThatX is both Noetherian and sober is essential. Note
also thatX itself is closed. Corollary 6.5 then implies that
X = ↓ E for some finiteE; that is,X hasproperty T:

Definition 6.6 The quasi-ordered setX hasproperty Tiff
there is a finite subsetE of X such that every element ofX
is less than or equal to some element ofE.

WhenX is Noetherian and sober, Corollary 6.5 also im-
plies that for everyx, y ∈ X, ↓ x ∩ ↓ y, which is closed, is
of the form↓ E, E finite. This is equivalent to the following
property, a dual of Jung’s property M [17, Definition, p.38]:

Definition 6.7 The quasi-ordered setX hasproperty Wiff,
for everyx, y ∈ X, there is a finite subsetE of maximal
lower bounds ofx andy, such that every lower bound ofx
andy is less than or equal to some element ofE.

Lemma 6.8 Let X be a Noetherian space,≤ its special-
ization quasi-ordering,≥ its converse, and≡ be≤ ∩ ≥.
Then≤ is well-founded: every infinite descending chain
. . . ≤ xk ≤ . . . ≤ x2 ≤ x1 stabilizes up to≡, i.e., there is
an integerN such thatxk ≡ xN for everyk ≥ N .

We prove the converse in Proposition 6.9 below. To this
end, we need to define theHoare quasi-ordering≤♭ on the
subsets of a setX quasi-ordered by≤: E ≤♭ E′ iff for
everyx ∈ E, there is anx′ ∈ E′ such thatx ≤ x′. Equiva-
lently, iff ↓ E ⊆ ↓ E′. Equating every finite subset with the
obvious finite multiset,≤♭ coincides with the multiset ex-
tension≤mul. It is well-known that (the strict part of)≤mul

if well-founded as soon as≤ is.

Proposition 6.9 Let ≤ be a quasi-ordering onX. If ≤ is
well-founded and has property W, thenX is Noetherian in
its upper topology. Its closed subsets, except possiblyX,
are finitary.

Proof. First, we show that:(∗) for every descending family
(↓ En)n∈N

, where eachEn is a finite subset ofX, there is
k ∈ N such that

⋂
n∈N ↓ En = ↓ Ek. Note that, since

↓ En+1 ⊆ ↓ En, for everyx ∈ En+1, there is ay ∈ En

such thatx ≤ y, that is,En+1 ≤♭ En. Then(∗) follows
since≤♭=≤mul is well-founded.

We obtain: (∗∗) for every filtered family(↓ Ei)i∈I ,
where eachEi is finite, there is a finite subsetE ⊆ X such
that

⋂
i∈I ↓ Ei = ↓ E. Indeed, assume the contrary. We

then build a descending sequence↓ E′
n, n ∈ N, where each

E′
n is someEi, by induction onn ∈ N. Let E′

0 be any
Ei. AssumingE′

n has been built, for somei ∈ I we must
have↓ E′

n 6⊆ ↓ Ei, otherwise
⋂

i∈I ↓ Ei = ↓ E′
n. Since

(↓ Ei)i∈I is filtered, for somej ∈ I, ↓ Ej is contained in
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↓ E′
n and in↓ Ei: let E′

n+1 = Ej . By construction, the
chain(↓ E′

n)n∈N
is strictly decreasing, contradicting(∗).

The closed subsets in the upper topology are the (ar-
bitrary) intersections of subsets of the form↓ Ei, i ∈
I, Ei finite. The empty intersection isX. Each non-
empty intersection

⋂
i∈I Ai can be written as a filtered in-

tersection of non-empty finite intersections:
⋂

i∈I Ai =⋂
J⊆I,J 6=∅ finite

⋂
i∈J Ai. By property W, every non-empty

finite intersection
⋂

i∈J ↓ Ei is of the form↓ EJ for some
finite subsetEJ . By (∗∗), every filtered intersection of sub-
sets of the form↓ EJ is again of the form↓ E, E finite.

So the closed subsets of the upper topology ofX are
exactly those of the form↓ E, E finite, plus the whole ofX.
Taking complements in(∗), every infinite ascending chain
of opens stabilizes: by Proposition 3.2,X is Noetherian.⊓⊔

Lemma 6.10 Let≤ be a quasi-ordering onX. If ≤ is well-
founded and has property W, then the irreducible closed
subsetsF of X are of the form↓ x, x ∈ X, plus possi-
bly X itself. If X additionally has property T, then the only
irreducible closed sets are of the first kind.

This finally allows us to characterize the Noetherian
sober spaces in terms of their specialization quasi-ordering:

Theorem 6.11 The Noetherian sober spaces are exactly
the spaces whose topology is the upper topology of a well-
founded partial order that has properties W and T.

When X is Alexandroff-discrete,S(X) is isomorphic to
the ideal completion ofX, with its Scott topology [20].
This shows first that, whenX is well-quasi ordered, and
equipped with its Alexandroff topology, then the upper
topology onS(X) is just the familiar Scott topology. Sec-
ond, this gives a more concrete description ofS(X) in this
case: the elements ofS(X), i.e., the irreducible closed sub-
setsF , are exactly the down-closed directed subsets ofX.

6.2. Cartesian Products

The product topologyon X1 × X2 is the coarsest that
makes the projectionsπi : X1 × X2 → Xi (i = 1, 2)
continuous. Theopen rectanglesU1 × U2, U1 open inX1,
U2 open inX2, form a basis of this topology. Theorem 6.11
makes the following almost immediate.

Lemma 6.12 The productX1 × X2 of two Noetherian
sober spaces is Noetherian and sober.

Theorem 6.13 The productX1× . . .×Xn of n Noetherian
spacesX1, . . . , Xn is Noetherian. Its opens are allfinite
unions of open rectanglesU1 × . . . × Un (Ui ∈ Ω(Xi)).

Proof. By induction onn. The essential case isn = 2.
First, note that for every openU of a spaceX, ηX(x) ∈ OU

iff x ∈ U . In particular:(∗) η−1
X (OU ) = U .

Consider the continuous mapi = ηX1
× ηX2

: X1 ×
X2 → pt(Ω(X1)) × pt(Ω(X2)). Let U any open sub-
set of X1 × X2. Write U as

⋃
i∈I U1

i × U2
i , where the

U1
i ’s are open inX1 and theU2

i ’s are open inX2. By (∗),
U =

⋃
i∈I η−1

X1
(OU1

i
) × η−1

X2
(OU2

i
) = i−1(

⋃
i∈I OU1

i
×

OU2

i
). Note that

⋃
i∈I OU1

i
×OU2

i
is open inpt(Ω(X1))×

pt(Ω(X2)). By Proposition 6.2,pt(Ω(X1)) andpt(Ω(X2))
are Noetherian. They are sober by construction. So by
Lemma 6.12,pt(Ω(X1))×pt(Ω(X2)) is Noetherian, hence⋃

i∈I OU1

i
× OU2

i
is compact inpt(Ω(X1)) × pt(Ω(X2)).

The family(OU1

i
×OU2

i
)
i∈I

is an open cover of it. So there

is a finite subsetI0 of I such that
⋃

i∈I OU1

i
× OU2

i
=⋃

i∈I0
OU1

i
× OU2

i
. ThenU = i−1(

⋃
i∈I0

OU1

i
× OU2

i
) =⋃

i∈I0
U1

i × U2
i is a finite union of open rectangles.

SinceX1 is Noetherian,U1
i is compact, and similarly for

U2
i , soU1

i × U2
i is compact inX1 × X2 by the finite case

of Tychonoff’s Theorem. It follows thatU , qua finite union
of compacts, is also compact. SoX1 ×X2 is Noetherian.⊓⊔

Corollary 6.14 Nthr is finitely complete.

Proof. By Theorem 6.13, it has all finite products. We
need only verify that it has all equalizers of parallel pairs
f, f ′ : X → Y . Their equalizer inTop is the subspace
Z = {x ∈ X|f(x) = f ′(x)} of X. Z is Noetherian by
Lemma 4.2, and clearly is an equalizer inNthr. ⊓⊔

However,Nthr is not cartesian-closed. As a full sub-
category ofTop, the exponentialY X , if it exists inNthr,
must be the space of continuous functions[X → Y ] from
X to Y . TakeX = N andY = {0, 1} with the Alexan-
droff topologies of their natural orderings. Since applica-
tion app : Y X ×X → Y is continuous in its first argument,
Ui = {f ∈ Y X |f(i) = 1} must be open inY X for any
i ∈ N. However, the chainU1 ⊆ U2 ⊆ . . . ⊆ Ui ⊆ . . . is
infinite. We may completeNthr to a cartesian-closed cat-
egoryTop

Nthr
by standard constructions: by Day’s Theo-

rem [10, Theorem 3.6], the categoryTopC of so-calledC-
generated spaces is cartesian-closed as soon asC is produc-
tive. The latter means that every space inC is exponentiable
and the product inTop of two spaces inC is C-generated.
Taking C = Nthr fits: first, every Noetherian space is
locally compact, hence exponentiable; then the product
in Top of two Noetherian spaces is Noetherian (Theo-
rem 6.13), henceNthr-generated [10, Lemma 3.2 (i)]. By
[10, Lemma 3.2 (v)], theNthr-generated spaces are ex-
actly the (possibly infinite) colimits of Noetherian spaces.

7. A Noetherian Topology onP(X)

Let us deal with the so-called Hoare powerdomain con-
struction first. For each topological spaceX, let its Hoare
spaceH(X) (resp.,H∅(X)) be the space of all non-empty
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closed subsets (resp., all closed subsets) ofX with the up-
per topology of the⊆ ordering. It has subbasic open sets
3U = {F ∈ H(X)|F ∩ U 6= ∅}, U open inX.

H(X) is used in denotational semantics to model angelic
non-determinism. Note that the closure of an elementF ∈
H(X) is 2F = H(X) \ 3(F ) = {F ′ ∈ H(X)|F ′ ⊆ F},
and similarly inH∅(X). On finitary closed sets,↓ E ⊆
↓ E′ iff E ≤♭ E′. The following is then immediate.

Proposition 7.1 For any Noetherian sober spaceX,H(X)
andH∅(X) are Noetherian and sober.

Theorem 7.2 For any Noetherian spaceX, H(X) and
H∅(X) are Noetherian.

Proof. Call basicopen set any finite intersection of subba-
sic opens3U . Every openU of H(X) is the union of the
basic opensV contained inU . Fix a way of writing each
basic openVi, sayVi =

⋂
j∈Ji

3Vij , whereJi is finite. Let

V̂i =
⋂

j∈Ji
3OVij

, and finally Û be the union of allV̂i,
Vi basic open contained inU . By construction, ifU ⊆ U ′,
thenÛ ⊆ Û ′. For every ascending chainU1 ⊆ U2 ⊆ . . . ⊆
Uk ⊆ . . . in H(X), Û1 ⊆ Û2 ⊆ . . . ⊆ Ûk ⊆ . . . is an
ascending chain inH(pt(Ω(X))). So it stabilizes, using
Proposition 6.2, Proposition 7.1, and Proposition 3.2.

Recall thatη−1
X (OU ) = U for every openU of X.

So 3Vij = {F ∈ H(X)|F ∩ η−1
X (OVij

) 6= ∅} =
H(ηX)−1(3OVij

), where H(ηX) maps F ∈ H(X)
to cl(ηX(F )). Indeed, H(ηX)−1(3OVij

) = {F ∈
H(X)|cl(ηX(F )) ∩ OVij

6= ∅} = {F ∈ H(X)|ηX(F ) ∩
OVij

6= ∅} = {F ∈ H(X)|F ∩ η−1
X (OVij

) 6= ∅}. So

U = H(ηX)−1(Û) for every open subsetU of H(X). In
particular, the mapU 7→ Û is injective.

Since Û1 ⊆ Û2 ⊆ . . . ⊆ Ûk ⊆ . . . stabilizes,U1 ⊆
U2 ⊆ . . . ⊆ Uk ⊆ . . . stabilizes, too. We conclude by
Theorem 3.2. The argument is similar forH∅(X). ⊓⊔

This has the following surprising consequence:

Proposition 7.3 Let X be a topological space, with spe-
cialization quasi-ordering≤. Let P(X) be the set of all
subsets (resp.P∗(X) of all non-empty subsets) ofX, quasi-
ordered by thetopological Hoare quasi-ordering≤♭∗, de-
fined as:A ≤♭∗ B iff cl(A) ⊆ cl(B). EquipP(X), resp.
P∗(X), with the corresponding upper topology.

If X is Noetherian, then so areP(X) andP∗(X).

Proof. Let≡♭∗ be the equivalence relation induced by≤♭∗,
andq the quotient map. Up to homeomorphism,P(X)/ ≡♭∗

is exactlyH(X), andq maps each subsetA to cl(A). Note
thatq is continuous: the inverse imageq−1(3U) is the set
of all subsetsA such thatcl(A) ∩ U 6= ∅, equivalently
cl(A) ⊆ U , equivalentlyA ≤♭∗ U , sinceU is closed. So
q−1(3O) is open in the upper topology.

We have actually just shown thatΩ(q) : Ω(H(X)) →
Ω(P(X)) maps3O to ↓♭∗ O. Recall thatΩ(q) is a frame
homomorphism, and is therefore entirely determined by this
property. This is clearly a bijection, whose inverse is the
unique frame homomorphism mapping↓♭∗ F to 3F , for
each closed subsetF of X. Every ascending chain of opens
O1 ⊆ O2 ⊆ . . . ⊆ Ok ⊆ . . . of P(X) then induces an
ascending chain of opens ofH(X) throughΩ(q)−1. By
Theorem 7.2 and Proposition 3.2, the latter stabilizes. So
the former stabilizes, too. HenceP(X) is Noetherian. ⊓⊔

Corollary 7.4 Let≤ be a well quasi-ordering onX. P(X)
andP∗(X), with the upper topology of≤♭, are Noetherian.

This is remarkable: in general≤♭ is not a well quasi-
ordering onP(X). The standard counterexample is Rado’s
example [24]. LetXRado be the set{(m, n) ∈ N2|m < n},
ordered by≤Rado: (m, n) ≤Rado (m′, n′) iff m = m′ and
n ≤ n′, or n < m′. It is well-known that≤Rado is a well
quasi-ordering. However,H(XRado) ∼= P(XRado) is not
well quasi-ordered by≤♭

Rado [5, Example 3.2].
A trivial consequence of this is thatH(X) andH∅(X)

are in general not Alexandroff-discrete, even whenX is. A
more important observation is that choosing the right topol-
ogy (here, the upper topology) matters.

The Smyth spaceQ(X) usually models demonic non-
determinism; this is the set of non-empty compact saturated
subsets ofX, ordered by reverse inclusion⊇, and equipped
with the corresponding Scott topology. The latter is gen-
erated by basic opens2U = {Q ∈ Q(X)|Q ⊆ U}, U
open inX, as soon asX is well-filtered and locally com-
pact. Contrarily toH(X), Q(X) is in general not Noethe-
rian: in X = H(XRado), which is not well quasi-ordered,
there is an infinite sequence of elementsF1, F2, . . . such
thatFi ⊆ Fj for no i < j; then↑ F1 ⊆ ↑ {F1, F2} ⊆ . . . ⊆
↑ {F1, . . . , Fk} ⊆ . . . is an infinite⊇-descending sequence
of elements ofQ(H(XRado)). This would be impossible if
the latter were Noetherian, by Lemma 6.8.

But consider the smaller setO(X) of opens (remem-
ber that every open is compact), equipped with the upper
topology of⊇. Clearly,O(X) ∼= H∅(X), by the home-
omorphism sending an open set to its complement. So by
Corollary 7.4,O(X) is Noetherian. Now note that ifX
is Alexandroff-discrete, then opens coincide with finitary
compacts↑ E. Equip Pfin(X) with the upper topology
of the Smyth quasi-ordering≤♯. It is easy to check that,
when X is equipped with the Alexandroff topology of a
well quasi-ordering≤, the map↑ that sendsE ∈ Pfin(X)
to ↑ E ∈ O(X) is a homeomorphism. Using this, the fact
thatO(X) ∼= H∅(X), and Theorem 7.2, we get:

Proposition 7.5 Let≤ be a well quasi-ordering onX, and
equipX with its Alexandroff topology. ThenPfin(X), with
the upper topology of≤♯, is Noetherian.
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Again, this contrasts with the theory of well-quasi order-
ings. Rado’s example shows that≤♯ is in general not a well
quasi-ordering onPfin(X). It is when≤ is ω2-wqo [16].

8. Ring Spectra, and the Zariski Topology

Let R be a commutative ring. ThespectrumSpec(R)
of R is the set of all prime ideals ofR. It is equipped
with the Zariski topology, whose closed subsets areFI =
{p ∈ Spec(R)|I ⊆ p}, whereI ranges over the ideals
of R. WhenR is the ring of polynomialsK[X1, . . . , Xk]
over an algebraically closed fieldK (e.g., C), there is a

canonical one-to-one mapping fromK
k

to Spec(R), which

equates the point(v1, . . . , vk) of K
k

with the prime ideal
{P ∈ R|P (v1, . . . , vk) = 0}. In this case, elements of

Spec(R) are points of the spaceK
k
. In general, it is useful

to think ofSpec(R) as a general notion of space of points.
A ring R is Noetherianiff every ⊆-increasing sequence

of ideals inR is stationary; e.g.,K[X1, . . . , Xk] is Noethe-
rian for any fieldK. It is well-known that, for any Noethe-
rian ring R, Spec(R) is a Noetherian topological space
[13, corollaire 1.1.6].Spec(R) is always sober [13, corol-
laire 1.1.4, (ii)], with⊇ as specialization ordering. By [13,
proposition 1.1.10, (i)], the setsSpec(R)\ ↓ (x) form a ba-
sis of the Zariski topology, where(x) is the (prime) ideal
generated byx ∈ R, so that↓ (x) = {p|p ⊇ (x)} =
{p|x ∈ p}. In particular, the Zariski topology coincides
with the upper topology, even whenR is not Noetherian.

From a computer science perspective, the caseR =
K[X1, . . . , Xk] is probably the most interesting, withK an
algebraically closed extension of the fieldK (e.g.,K = Q,
K = C). Recall thatSpec(R) is Noetherian in this case.
The elements ofSpec(R) can be equated with elements of

K
k
. The closed subsetsFI can be represented by providing

a Gröbner basis for the polynomial idealI [8, Section 11].
This Gröbner basis is not unique: for any givenI, it depends
on the choice of a so-called admissible ordering of mono-
mials, andI itself is not determined uniquely; howeverFI

only depends on the radical ideal
√

I = {P ∈ R|∃k ≥
1 · P k ∈ I} of I. Note that radical ideals, hence also the
closed subsetsFI , are in one-to-one correspondence with
affine varieties, i.e., with sets of common zeroes of polyno-
mials overK: this is Hilbert’s Nullstellensatz [25].

Now considerpolynomial automataover K, i.e., pairs
A = (Q, δ), where Q is a finite set ofstates, R =
K[X1, . . . , Xk], and δ ⊆ Q × Pfin(R) × Rk × Q
is the transition relation. The intent is to model pro-
grams overk variables taking values inK, and with
polynomial operations. The semantics ofA is an infi-
nite state transition system, whoseconfigurationsare tu-

ples (q, v1, . . . , vk) ∈ Q × K
k
, and valid transitions are

of the form (q, v1, . . . , vk) → (q′, P1(v1, . . . , vk), . . . ,

Pk(v1, . . . , vk)), where (q, E, (P1, . . . , Pk), q′) ∈ δ and
P (v1, . . . , vk) = 0 for everyP ∈ E. TheE part models
guards, testing equality between polynomial expressions,
and the(P1, . . . , Pk) part models variable updates. E.g.,
the program fragmentif 3X2

1 = X2 − 1 ∧ X1X2 =
X3 then (X1 := X2

1 − 2X3 +X2; X2 := X3 +1), in ML-
like syntax, would be described withE = {3X2

1 − X2 +
1, X1X2 − X3}, P1 = X2

1 − 2X3 + X2, P2 = X3 + 1,

P3 = X3. EquipK
k

with the Zariski topology, obtained

through the one-to-one correspondence betweenK
k

and
Spec(R). It is easy to see that the binary relation→ is up-
per semi-continuous. This is becausePre∃(→)(FI) = FI′ ,
whereI ′ =

⋃
(q,E,(P1,...,Pk),q′)∈δ(E) ∩ {P ◦ (P1, . . . , Pk)

|P ∈ I}, and(E) is the ideal generated byE. This is easily
computed using Gröbner bases whenK = Q. This was ex-
plored by Müller-Olm and Seidl in a very nice paper [22],
and we refer the reader to this for missing details and a gen-
tler introduction. We leave it as future research to explore
the application of other Noetherian rings to computer verifi-
cation problems; also, the use of more complex Noetherian
spaces such asSpec(K[X1, . . . , Xk]) × Np, modeling pro-
grams withk variables inK andp integer variables.

9. A New Data Structure for Coverability?

Consider the following argument. Start from a Noethe-
rian spaceX, e.g.,Nk with its Alexandroff topology (this
is the space of markings of a Petri net). By Proposition 6.2,
S(X) is Noetherian. By Corollary 6.5, its opens are exactly
the finitary closed subsets↓ E, E ⊆ S(X). We equate
X with a subspace ofS(X), i.e., we equatex ∈ X with
ηX(x) ∈ S(X). For instance,S(Nk) = (N ∪ {+∞})k, as
we have seen. Now the topology ofX is exactly the topol-
ogy induced onX by that ofS(X), so we have a way of rep-
resenting all opens ofX using a finite setE of elements of
S(X), as the complement inX of X ∩ ↓ E. This is clear on
Nk: for example, withk = 3, we may represent the upward-
closed set (open inN3) ↑ {(2, 3, 5)} as the complement of
X ∩ ↓ {(1, +∞, +∞), (+∞, 2, +∞), (+∞, +∞, 4)}.

This is completely general: we canalways represent
opens of Noetherian spacesX as complements of sets of
the formX ∩ ↓ E, E a finite subset ofS(X). This is im-
portant for those Noetherian spaces, e.g.,P(X), that do
not arise from well quasi-orderings, and where opens can-
not be represented as↑ E (E finite ⊆ X). Even on well
quasi-ordered spaces such asNk, this may provide an al-
ternate representation of sets of the formPre∃∗δ(V ) or
I JF Kδ ρ. E.g., onNk, whenδ is the transition relation of
a Petri net (taken as a finite set of rewrite rules~mi → ~ni,
1 ≤ i ≤ ℓ, of vectors inNk, where ~mi, ~ni ∈ Nk), we

may computePre∃δ(X ∩ ↓ E) = Pre∀δ(X∩ ↓ E) and
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Pre∀δ(X ∩ ↓ E) = Pre∃δ(X∩ ↓ E) by the formulae:

Pre∃δ(X ∩ ↓ E) = X ∩ ↓ {~p + ~mi − ~ni

| ~p ∈ E, 1 ≤ i ≤ ℓ · ~p ≥ ~ni}

Pre∀δ(X ∩ ↓ E) = X ∩
ℓ⋂

i=1

(
∁↑ ~mi ∪ ↓ {~p + ~mi − ~ni

| ~p ∈ E · ~p ≥ ~ni}
)

(We leave the computation of finite unions and intersections
of sets of the form↓ E, and of the complement∁↑ ~mi of
↑ ~mi in S(X), as an exercise to the reader.)

10. Conclusion

We have laid down the first steps towards a theory
of Noetherian spaces as generalized well quasi-orderings.
Noetherian spaces enjoy many nice properties. Every finite
product, equalizer, subspace, finite coproduct, coequalizer,
quotient, retract of Noetherian topological spaces is again
Noetherian. We have also characterized those Noetherian
topologies that are sober, as the upper topologies of well-
founded quasi-orderings with properties W and T. We have
shown that a space is Noetherian iff its sobrification is
Noetherian. The Hoare space of a Noetherian space is
Noetherian, which implies the surprising property that the
setP(X) of all subsets of a Noetherian spaceX, even in-
finite ones, under the upper topology of the Hoare quasi-
ordering ≤♭, is Noetherian, although≤♭ is not in gen-
eral a well quasi-ordering. (Similarly withPfin(X) and
≤♯.) Our Noetherian space approach to model-checking
negation-freeµ-calculus formulae, finally, allows one to
verify infinite transition systems that are more general than
well-structured transition systems, including e.g. polynomi-
ally definable transitions, as we have argued using Zariski
topologies on ring spectra.
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