Jean Goubault-Larrecq

λ-calcul

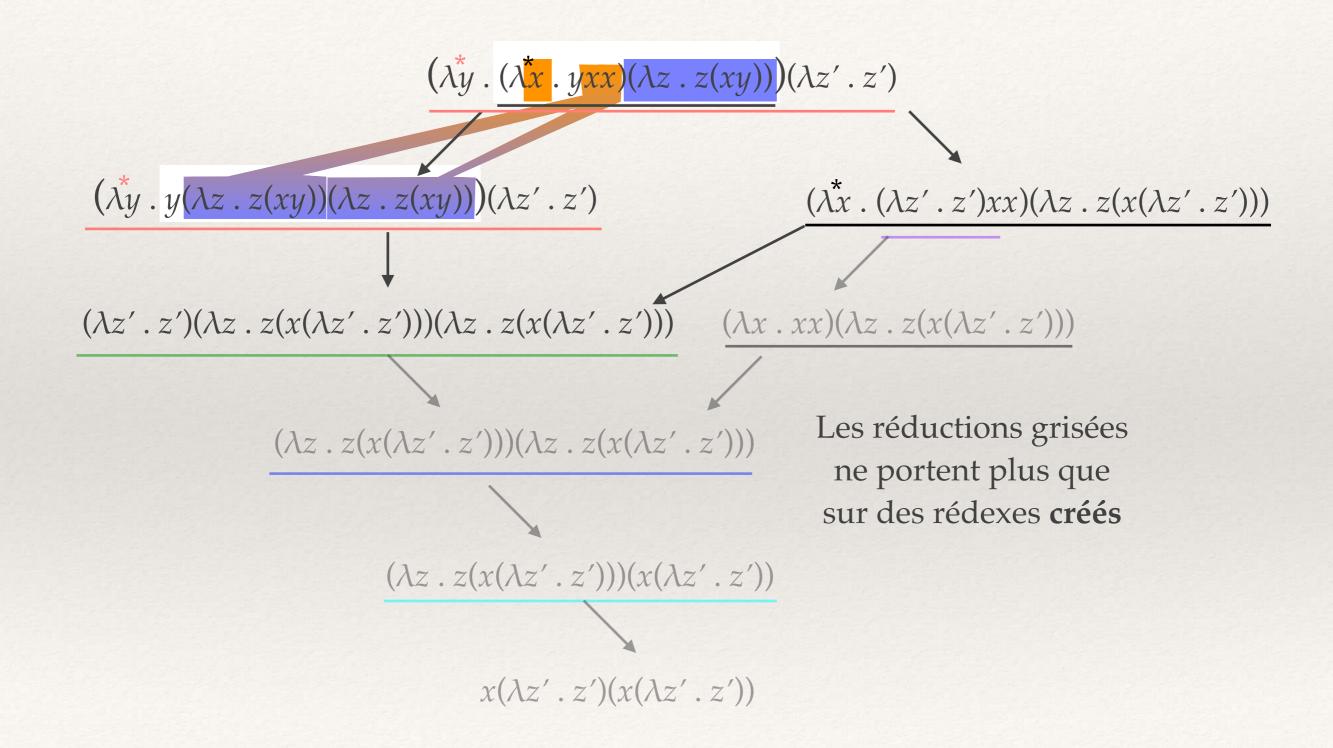
2. Développements finis, confluence

Le théorème des développements finis

Rédexes créés

- * Lors d'une contraction $(\lambda x \cdot u)v \rightarrow u[x:=v]$, si: -u = C[xt] $-v = \lambda y \cdot s$
 - alors u[x:=v] contient un sous-terme $(\lambda y \cdot s)(t[x:=v])$: c'est un rédex **créé**
- * Théorème des développements finis: « si on ne contracte pas les rédexes créés, alors la réduction termine »
- * Ex: $\Omega = \delta \delta$, où $\delta = \lambda x \cdot xx$ $\Omega = (\lambda x \cdot xx) (\lambda y \cdot yy) \rightarrow (\lambda y \cdot yy) (\lambda y \cdot yy)$: rédex **créé**: stop

Exemple de développements finis



Formalisation: le λ*-calcul

* La syntaxe du λ^* -calcul:

Ce sera la **seule forme** de rédex du λ^* -calcul — non, $(\lambda x \cdot s)t$ n'y est pas un rédex

```
s,t,u,v,\ldots :=
```

```
x,y,z,... vari les (en nb. \infty dénombrable)
```

$$|st|$$
 st pplication (de s à t)

$$| \lambda x.s \rangle$$
 \(\lambda-\text{abstraction (fun } x \ -> s, \text{ en Caml)} \)

$$|(\lambda^*x.s)t|$$
 rédex

 $(\lambda^*x \cdot s)t$ n'est **pas** une application; pensez-y comme let x=t in s

tout ça à α-renommage près, bien entendu

L'étoile parcourt un ensemble; si j'ai besoin d'en prendre plusieurs, je les représenterai avec des couleurs différentes

Formalisation: le λ*-calcul

* La syntaxe du λ^* -calcul:

```
s,t,u,v,\ldots :=
x,y,z,\ldots variables (en nb. \infty dénombrable)
|st| application (de s à t)
|\lambda x.s| \lambda-abstraction (fun x -> s, en Caml)
|(\lambda^*x.s)t| rédex
```

- * Unique règle: (β^*) $(\lambda^*x \cdot u) v \rightarrow u[x:=v]$
- * Nous allons montrer que \rightarrow_{β^*} termine (fortement)

Terminaison: 1er essai

- * Technique de base: montrer que tout λ^* -terme u termine, par récurrence sur (la taille de) u
 - * Cas de base: les variables terminent (normales)
 - ∗ Cas λx . u: les seules réductions ∞ partant de λx . u sont de la forme

$$\lambda x \cdot u_0 \rightarrow \lambda x \cdot u_1 \rightarrow \dots \rightarrow \lambda x \cdot u_n \rightarrow \dots (\infty)$$

où $u = u_0 \rightarrow u_1 \rightarrow \dots \rightarrow u_n \rightarrow \dots (\infty)$

* impossible car *u* termine, par hyp. réc.

noter que, même si u_n est de la forme λx . s, $u_n v_n$ n'est **pas** un rédex en λ^* -calcul

non, u_n ne **peut pas** être de la forme λ^*x . s: λ^*x . s ne fait pas partie de la syntaxe du λ^* -calcul (rappel: $(\lambda^*x \cdot s)t$ n'est **pas** une application, c'est un let)

- * Cas uv: les seules réductions ∞ partant de uv sont de la forme $u_0 v_0 \rightarrow u_1 v_1 \rightarrow ... \rightarrow u_n v_n \rightarrow ... (\infty)$
- * où $u=u_0$, $v=v_0$, et où pour tout i, $[u_i v_i \rightarrow u_{i+1} v_{i+1} \text{ donc}]$ soit $u_i \rightarrow u_{i+1}$ et $v_i = v_{i+1}$ (type « gauche »)
 soit $u_i = u_{i+1}$ et $v_i \rightarrow v_{i+1}$ (type « droit »)
- * Par hyp.réc., u termine donc # fini de types « gauche »
- * De même, v termine donc # fini de types « droit »
- Donc la réduction donnée partant de uv ne peut pas être ∞

Terminaison: 1er essai

- * Cas $(\lambda^*x \cdot u)v$: les seules réductions ∞ partant de $(\lambda^*x \cdot u)v$ sont de la forme (1) $(\lambda^*x \cdot u_0)v_0 \rightarrow (\lambda^*x \cdot u_1)v_1 \rightarrow \dots \rightarrow (\lambda^*x \cdot u_n)v_n \rightarrow \dots (\infty)$ ou (2) $(\lambda^*x \cdot u_0)v_0 \rightarrow (\lambda^*x \cdot u_1)v_1 \rightarrow \dots \rightarrow (\lambda^*x \cdot u_n)v_n \rightarrow u_n[x:=v_n] \rightarrow \dots (\infty)$
 - où $u=u_0$, $v=v_0$, et où pour tout i (i < n dans le 2nd cas), — soit $u_i \rightarrow u_{i+1}$ et $v_i = v_{i+1}$ (type « gauche ») — soit $u_i = u_{i+1}$ et $v_i \rightarrow v_{i+1}$ (type « droit »)
- Par hyp.réc., # fini de types « gauche », idem types « droit », donc (1) impossible

Le truc: quantifier sur les substitutions (parallèles)

- * Comment conclure dans le cas (2)?
- * On pourrait montrer que si u termine et v termine, alors u[x:=v] termine, mais pour ça il faudra aussi montrer que u[x:=v][y:=w] termine, etc.

Substitution parallèle

* Une **substitution** θ est une fonction d'un domaine fini de variables vers les termes

$$\theta \triangleq [x_1 := v_1, ..., x_m := v_m]$$
 (x_i distinctes 2 à 2)
dom $\theta \triangleq \{x_1, ..., x_m\}$ yld $\theta \triangleq \bigcup_{i=1}^m fv(v_i)$

- * On définit $u\theta$ lorsque $bv(u) \cap (dom \theta \cup yld \theta) = \emptyset$
- * $x\theta \stackrel{\text{def}}{=} v_i \text{ si } x = x_i, \quad x \text{ si } x \notin \text{dom } \theta$ $(st)\theta \stackrel{\text{def}}{=} (s\theta)(t\theta)$ $(\lambda x \cdot s)\theta \stackrel{\text{def}}{=} \lambda x \cdot s\theta$ $((\lambda^* x \cdot s)t)\theta \stackrel{\text{def}}{=} (\lambda^* x \cdot (s\theta))(t\theta)$

généralise la notion de substitution de la dernière fois (cas m=1)

Substitution parallèle

- * **Lemme.** Si $\theta = [x_1 := v_1, ..., x_m := v_m]$, et $z \notin \text{dom } \theta \cup \text{yld } \theta$, alors $(u\theta)[z := t] = u[x_1 := v_1, ..., x_m := v_m, z := t]$
- * Preuve: récurrence sur (la taille de) *u*. Le seul cas intéressant est si *u* est une variable:
- * $\sin u = x_i$, $(u\theta)[z:=t] = v_i[z:=t] = v_i \operatorname{car} z \notin \operatorname{yld} \theta$ = $u[x_1:=v_1, ..., x_m:=v_m, z:=v]$
- * $\sin u = z$, $(u\theta)[z:=t] = z[z:=t] \cos z \notin \text{dom } \theta$ = $t = u[x_1:=v_1, ..., x_m:=v_m, z:=t]$
- (autres variables: trivial)

La proposition clé

- * Soit SN ^{def} {termes qui terminent (fortement)}
- * Soit $SN = \{\text{substitutions } \theta = [x_1 := v_1, ..., x_m := v_m] \}$ telles que tous les v_i sont dans $SN \}$
- Proposition. Pour tout $λ^*$ -terme u,
 pour toute θ ∈ SN, uθ ∈ SN.
- * Preuve: (presque) comme avant: récurrence sur la taille de *u*.
- * **Attention:** ce qu'on prouve par récurrence, c'est « pour toute $\theta \in SN$, $u\theta \in SN$ » **avec** le quantificateur sur θ .

Cas 1/4: variables

Proposition. Pour tout λ^* -terme u,

- * Si u est une variable, pour toute $\theta \in \underline{SN}$, $u\theta \in SN$. pour toute $\theta \in \underline{SN}$, $u\theta \in SN$.
- * si $u \in \text{dom } \theta$, disons $u=x_i$, $u\theta=v_i$ est dans SN, puisque $\theta \in \underline{SN}$
- * sinon, $u\theta = x$ est en forme normale, donc dans SN

Cas 2/4: λ-abstraction

- * Si u est une λ -abstraction λx . s, pour toute $\theta \in \underline{SN}$, $u\theta \in SN$. pour toute $\theta = [x_1 := v_1, ..., x_m := v_m] \in \underline{SN}$,
- * $(\lambda x \cdot s)\theta =_{\alpha} \lambda z \cdot s[x:=z]\theta$ (z fraîche, i.e., \notin dom $\theta \cup yld \theta$)
- * les seules réductions ∞ partant de λx . u sont de la forme $\lambda z \cdot u_0 \to \lambda z \cdot u_1 \to \dots \to \lambda z \cdot u_n \to \dots (\infty)$ où $s[x:=z]\theta=u_0 \to u_1 \to \dots \to u_n \to \dots (\infty)$ impossible car $s[x:=z]\theta$ termine, par hyp. réc.

Note: taille de s[x:=z] = taille de s < taille de $u = \lambda x$. s

Proposition. Pour tout λ^* -terme u,

Cas 3/4: application

Proposition. Pour tout λ^* -terme u,

pour toute $\theta \in \underline{SN}$, $u\theta \in SN$.

- * Si u est une application st, pour toute $\theta = [x_1 := v_1, ..., x_m := v_m] \in \underline{SN}$,
- * $u\theta = (s\theta)(t\theta)$
- * les seules réductions ∞ partant de $u\theta$ sont de la forme

```
u_0 v_0 \rightarrow u_1 v_1 \rightarrow \dots \rightarrow u_n v_n \rightarrow \dots (\infty)
```

- où $s\theta = u_0$, $t\theta = v_0$, et où pour tout i, $[u_i v_i \rightarrow u_{i+1} v_{i+1} \text{ donc}]$
- soit $u_i \rightarrow u_{i+1}$ et $v_i = v_{i+1}$ (type « gauche »)
- soit $u_i = u_{i+1}$ et $v_i \rightarrow v_{i+1}$ (type « droit »)
- * Par hyp.réc., sθ termine donc # fini de types « gauche »
- * De même, tθ termine donc # fini de types « droit »
- * Donc la réduction donnée partant de $u\theta$ ne peut pas être ∞

Cas 4/4: let (1ère partie/2)

- * Si u est un let $(\lambda^*x \cdot s)t$, pour toute $\theta = [x_1 := v_1, ..., x_m := v_m] \in \underline{SN}$,
- **Proposition.** Pour tout λ^* -terme u, pour toute $\theta \in \underline{SN}$, $u\theta \in SN$.
- * $u\theta =_{\alpha} (\lambda^* z \cdot s[x:=z]\theta)(t\theta)$ (z fraîche, i.e., \notin dom $\theta \cup yld \theta$)
- ⋄ les seules réductions ∞ partant de $u\theta$ sont de la forme
 - (1) $(\lambda^*z \cdot u_0)v_0 \to (\lambda^*z \cdot u_1) v_1 \to \dots \to (\lambda^*z \cdot u_n) v_n \to \dots (\infty)$ ou (2) $(\lambda^*z \cdot u_0)v_0 \to (\lambda^*z \cdot u_1) v_1 \to \dots \to (\lambda^*z \cdot u_n) v_n \to u_n[z:=v_n] \to \dots (\infty)$
 - où $s[x:=z]\theta=u_0$, $t\theta=v_0$, et où pour tout i (i < n dans le 2nd cas), soit $u_i \rightarrow u_{i+1}$ et $v_i = v_{i+1}$ (type « gauche ») soit $u_i = u_{i+1}$ et $v_i \rightarrow v_{i+1}$ (type « droit »)
- * Par hyp.réc., # fini de types « gauche » et « droit », donc (1) impossible

Cas 4/4: let (2ème partie/2)

- * Si u est un let $(\lambda^*x \cdot s)t$, pour toute $\theta = [x_1 := v_1, ..., x_m := v_m] \in \underline{SN}$,
- **Proposition.** Pour tout λ^* -terme u, pour toute $\theta \in \underline{SN}$, $u\theta \in SN$.
- * les seules réductions ∞ partant de $u\theta$ sont de la forme (2) $(\lambda^*z \cdot u_0)v_0 \rightarrow (\lambda^*z \cdot u_1)v_1 \rightarrow \dots \rightarrow (\lambda^*z \cdot u_n)v_n \rightarrow u_n[z:=v_n] \rightarrow \dots (\infty)$ où $s[x:=z]\theta=u_0$, $t\theta=v_0$, et où pour tout i (i< n dans le 2nd cas), — soit $u_i \rightarrow u_{i+1}$ et $v_i = v_{i+1}$ (type « gauche ») — soit $u_i = u_{i+1}$ et $v_i \rightarrow v_{i+1}$ (type « droit »)
- * On a $s[x:=z]\theta=u_0 \rightarrow^* u_n$ et $t\theta=v_0 \rightarrow^* v_n$ donc $s[x:=z]\theta[z:=t\theta] \rightarrow^* u_n[z:=v_n] \rightarrow \dots (\infty)$
- * Mais $s[x:=z]\theta[z:=t\theta]$ = $s[x:=z][x_1:=v_1, ..., x_m:=v_m, z:=t\theta]$
- **Lemme.** Si $\theta \triangleq [x_1 := v_1, ..., x_m := v_m],$ et $z \notin \text{dom } \theta \cup \text{yld } \theta$, alors $(u\theta)[z := t] = u[x_1 := v_1, ..., x_m := v_m, z := v_m]$

Cas 4/4: let (2ème partie/2)

* Si u est un let $(\lambda^*x \cdot s)t$, pour toute $\theta \triangleq [x_1:=v_1, ..., x_m:=v_m] \in \underline{SN}$,

Proposition. Pour tout λ^* -terme u, pour toute $\theta \in \underline{SN}$, $u\theta \in SN$.

```
v_1, ..., v_m \text{ dans SN, car } \theta \in \underline{SN} nt de u\theta sont de la forme 

(2) (\Lambda^*z \cdot u_0)v_0 (\Lambda^*z \cdot u_1)v_1 \rightarrow ... \rightarrow (\Lambda^*z \cdot u_n)v_n \rightarrow u_n[z:=v_n] \rightarrow ... (\infty) où s[x:=z]\theta=u_0, t\theta 0, et où pour tout i (i< n dans le 2nd cas), = v_{i+1} (type « gauche ») = v_{i+1} (type « droit »)
```

- * On a $s[x:=z]\theta=u_0 u_n$ et $t\theta=v_0 \rightarrow v_n$ donc $s[x:=z]\theta[z:=t\theta] \rightarrow u_n[z:=v_n] \rightarrow \dots \infty$
- * Mais $s[x:=z]\theta[z:=t\theta]$ = $s[x:=z][x_1:=v_1, ..., x_m:=v_m, z:=t\theta]$

*t*θ dans SN, par hyp. réc. sur *t*

cette substitution est donc dans <u>SN</u>
alors $(u\theta)[z:=t] = u[x_1:=v_1, ..., x_m:=v_m, z:=v_m]$

... est dans SN, par hyp. réc. sur s[x:=z] (note: taille=taille de s<taille de u)

Cas 4/4: let (2ème partie/2)

* Si u est un let $(\lambda^*x \cdot s)t$, pour toute $\theta \triangleq [x_1:=v_1, ..., x_m:=v_m] \in \underline{SN}$,

Proposition. Pour tout λ^* -terme u, pour toute $\theta \in \underline{SN}$, $u\theta \in SN$.

- * les seules réductions ∞ partant de $u\theta$ sont de la forme (2) $(\lambda^*z \cdot u_0)v_0 \rightarrow (\lambda^*z \cdot u_1)v_1 \rightarrow \dots \rightarrow (\lambda^*z \cdot u_n)v_n \rightarrow u_n[z:=v_n] \rightarrow \dots (\infty)$ où $s[x:=z]\theta=u_0$, $t\theta=v_0$, et où pour tout i (i< n dans le 2nd cas), — soit $u_i \rightarrow u_{i+1}$ et $v_i = v_{i+1}$ (type « gauche ») — soit $u_i = u_{i+1}$ et $v_i \rightarrow v_{i+1}$ (type « droit »)
- * On a $s[x:=z]\theta=u_0 \rightarrow^* u_n$ et $t\theta=v_0 \rightarrow^* v_n$ donc $s[x:=z]\theta[z:=t\theta] \rightarrow^* u_n[z:=v_n] \rightarrow \dots (\infty)$
- * Mais $s[x:=z]\theta[z:=t\theta]$ = $s[x:=z][x_1:=v_1, ..., x_m:=$

Contradiction! Si $\theta \triangleq [x_1 := v_1, ..., x_m := v_m],$ $et z \notin dom \ \theta \cup yld \ \theta,$ $alors (u\theta)[z := t] = u[x_1 := v_1, ..., x_m := v_m],$

alors $(u\theta)[z:=t] = u[x_1:=v_1, ..., x_m:=v_m, z:=v_m]$

... est dans SN, par hyp. réc. sur s[x:=z] (note: taille=taille de s<taille de u)

Le théorème des développements finis

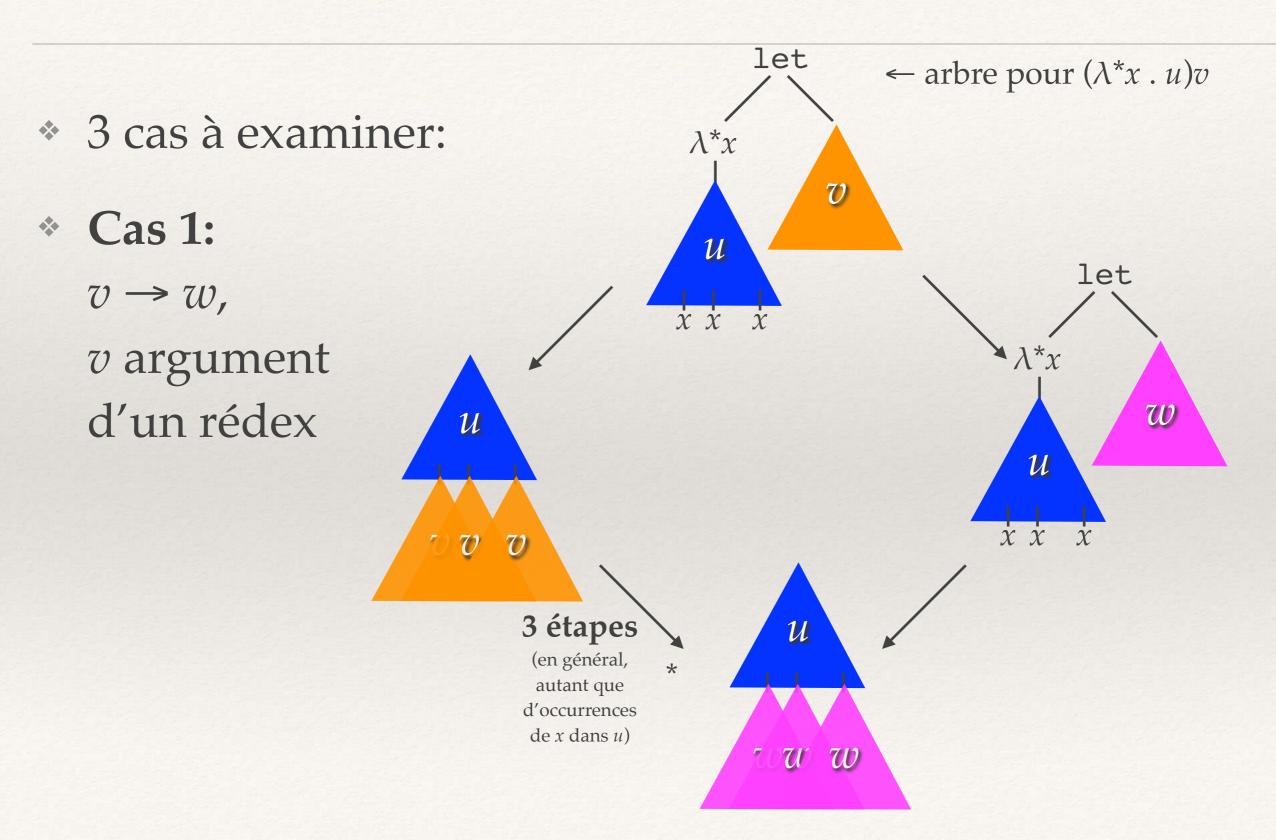
- * On vient de prouver:
- ❖ **Proposition.** Pour tout λ^* -terme u, pour toute $\theta \in SN$, $u\theta \in SN$.
- Donc, en prenant θ ^{def}[]:
- * Théorème (développements finis). Le λ^* -calcul est fortement normalisant.

Confluence du \(\lambda\)*-calcul

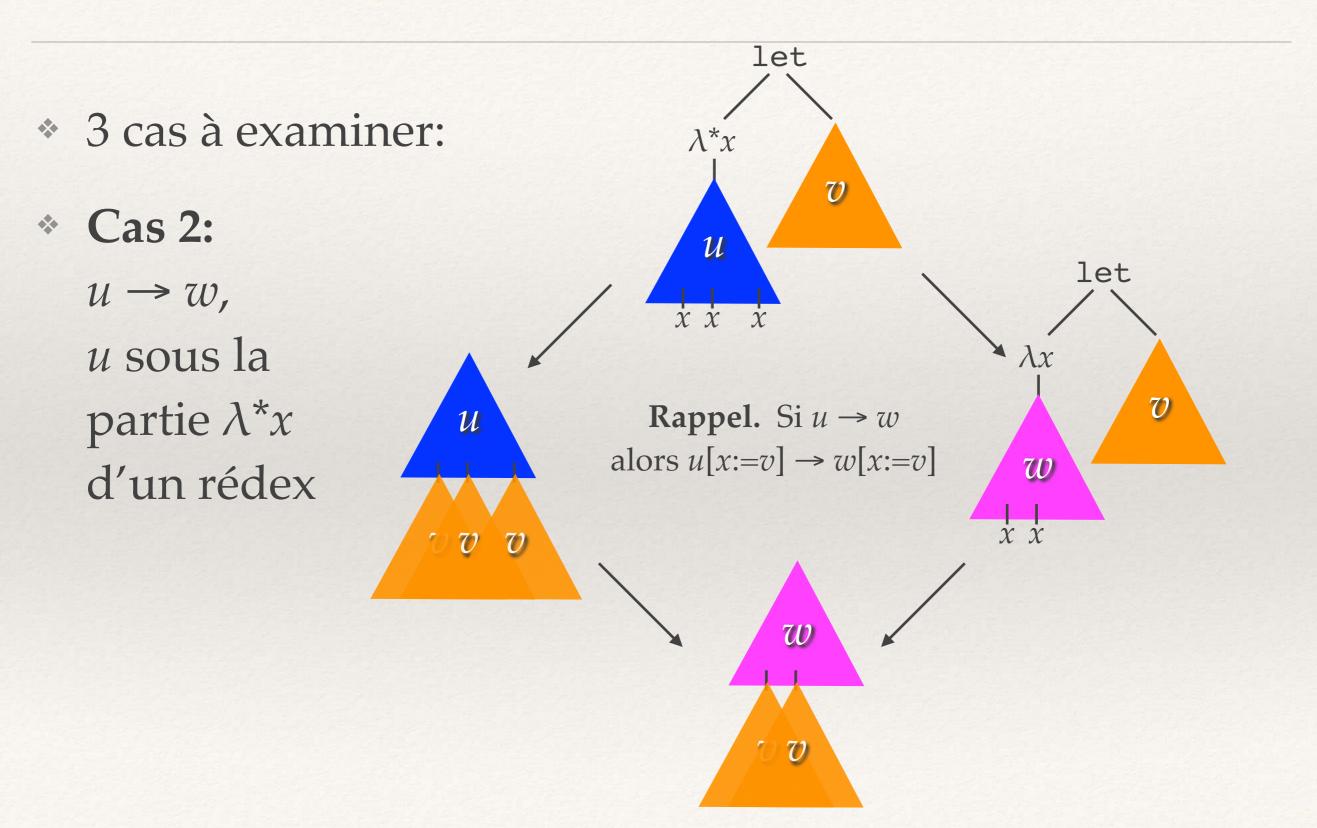
Confluence locale du \(\lambda\)*-calcul

- * Nous notons que le λ^* -calcul est localement confluent
- * Le raisonnement est exactement le même que pour le λ -calcul (avec des étoiles en plus, c'est tout)

Le λ*-calcul est localement confluent

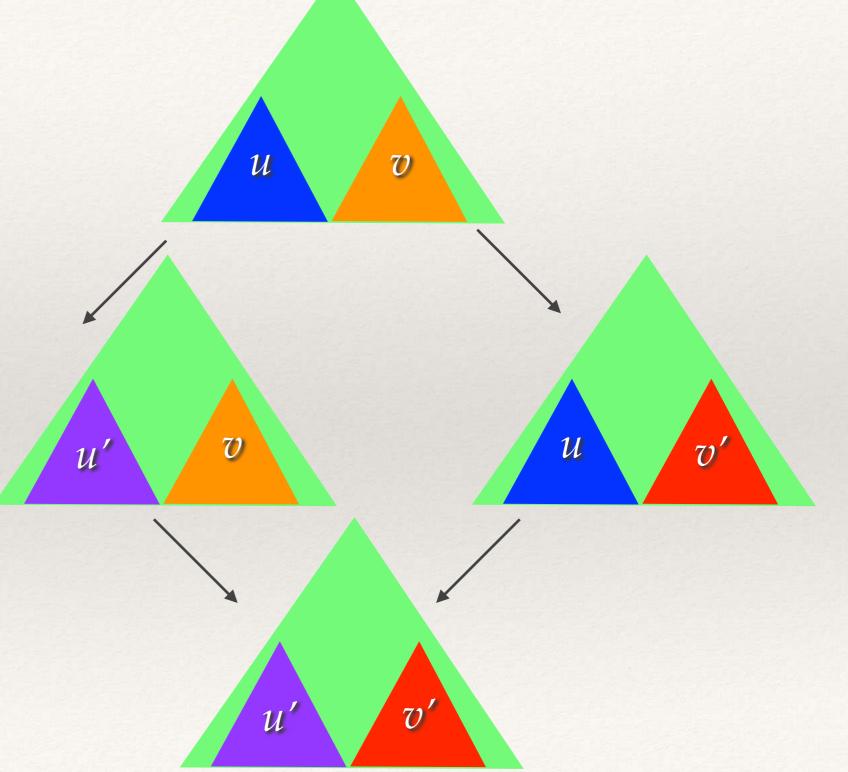


Le λ*-calcul est localement confluent



Le λ*-calcul est localement confluent

- * 3 cas à examiner:
- * Cas 3: rédex disjoints $u \rightarrow u', v \rightarrow v'$



Confluence du \(\lambda\)*-calcul

- * Le λ^* -calcul termine, et est localement confluent.
- Donc il est confluent (Newman)
- * et tout λ^* -terme u a une **forme normale unique** $u\downarrow$

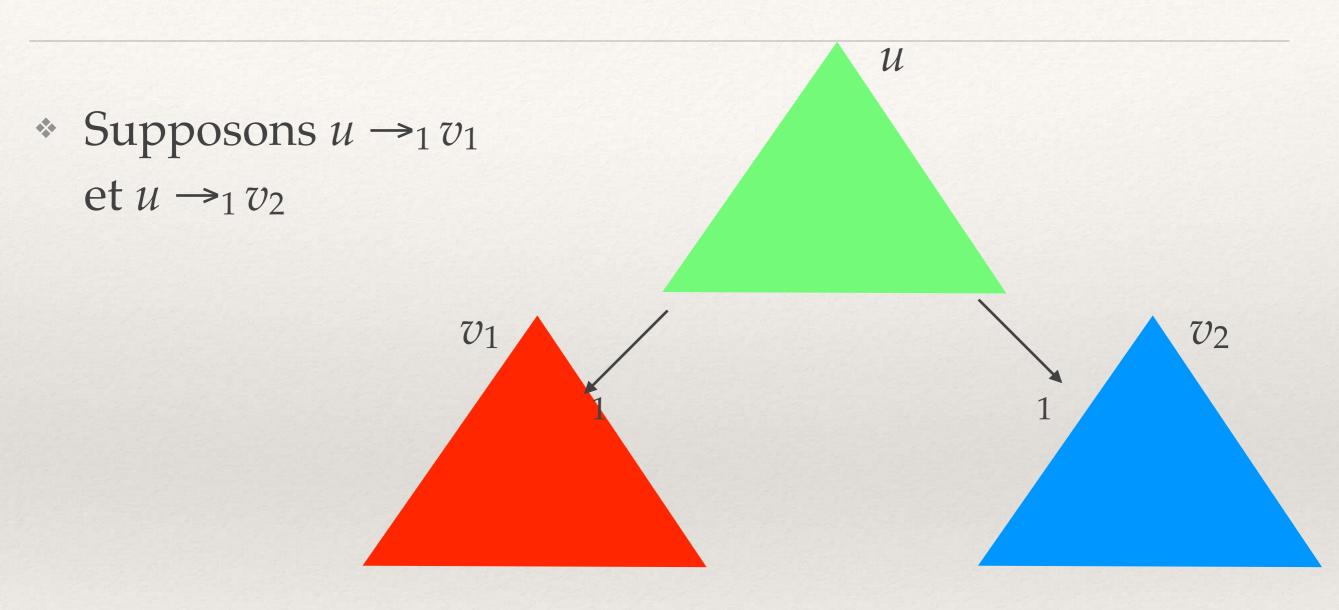
Lemme (Newman 1941). Toute relation localement confluente et fortement normalisable est confluente.

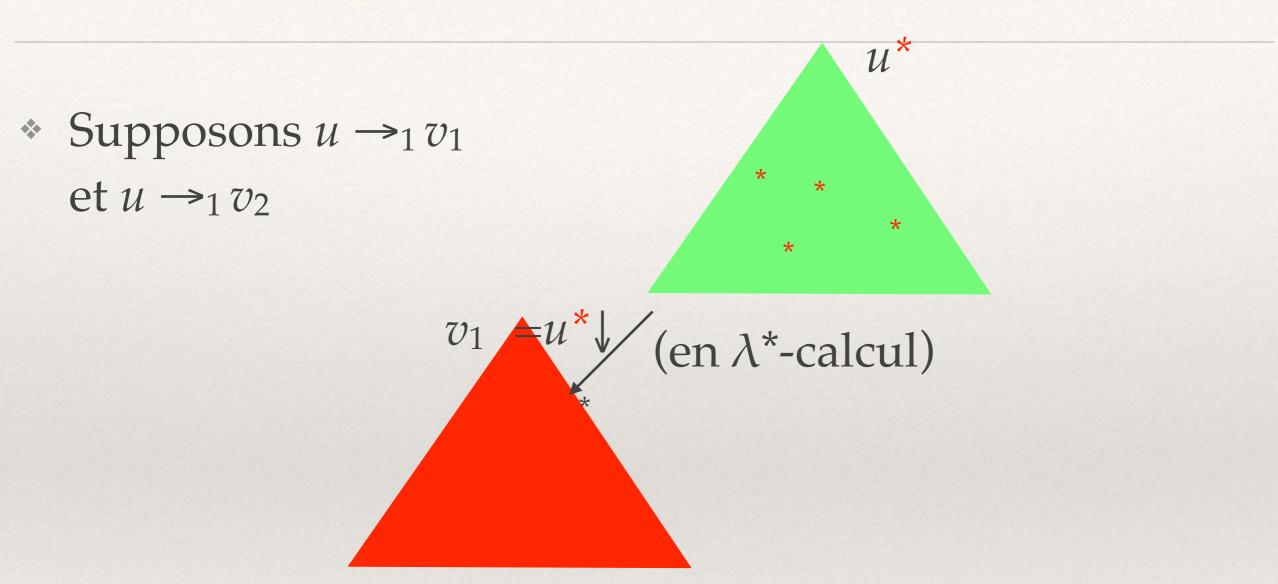
* Note. On peut identifier les λ^* -formes normales avec les λ -termes (= les λ^* -termes sans étoile)

Confluence du \(\lambda\)-calcul

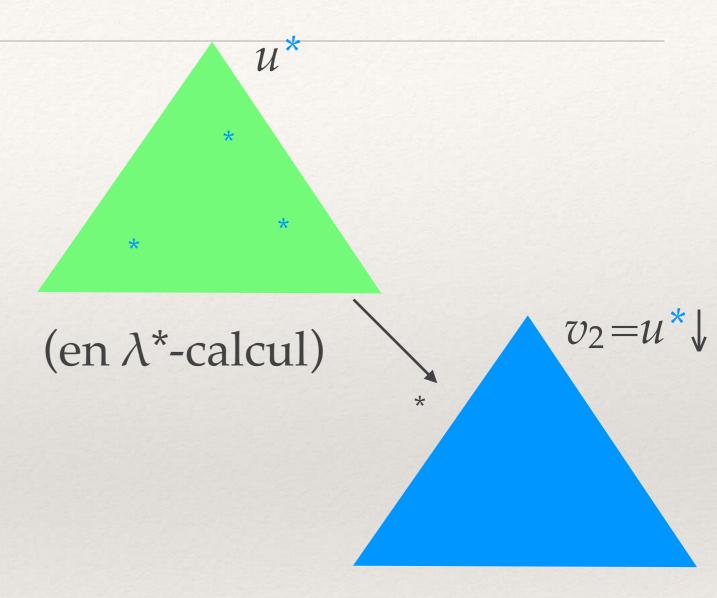
La relation \rightarrow_1

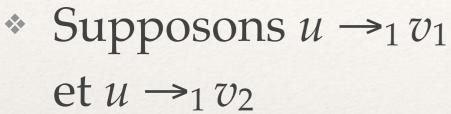
- * On définit E (effacement d'étoiles): $\lambda^* \to \lambda$ par $E((\lambda^*x \cdot s)t) \triangleq (\lambda x \cdot E(s))E(t)$ (et $E(x) \triangleq x$, $E(uv) \triangleq E(u)E(v)$, etc.)
- * Pour deux λ -(pas λ^*)termes u et v, on dit que $u \to_1 v$ ssi il existe un λ^* -terme u^* tel que $E(u^*)=u$ et $u^*\downarrow=v$
- * ... autrement dit: ajouter des étoiles sur certains β -rédexes de u, puis β *-normaliser.
- $* \rightarrow_1$ est fortement confluente: la preuve en images...



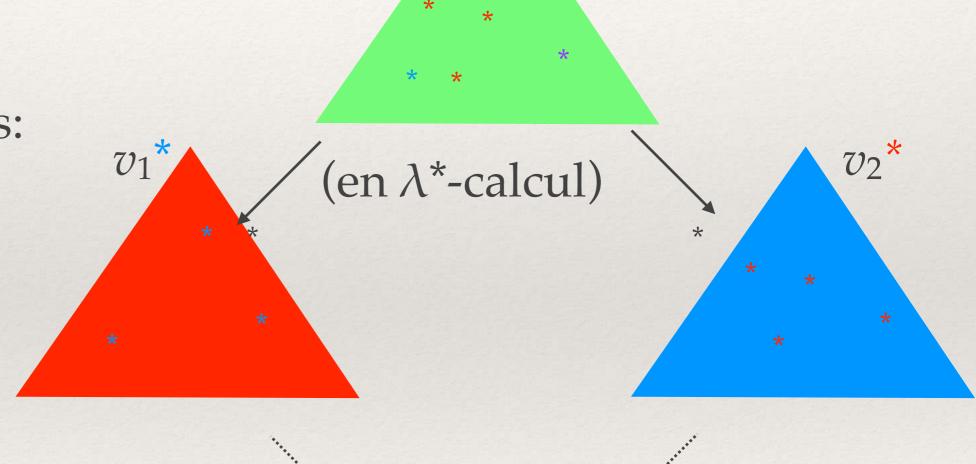


* Supposons $u \rightarrow_1 v_1$ et $u \rightarrow_1 v_2$



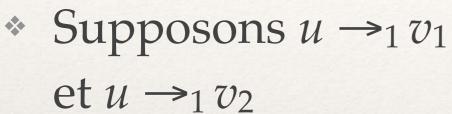


* Superposons:



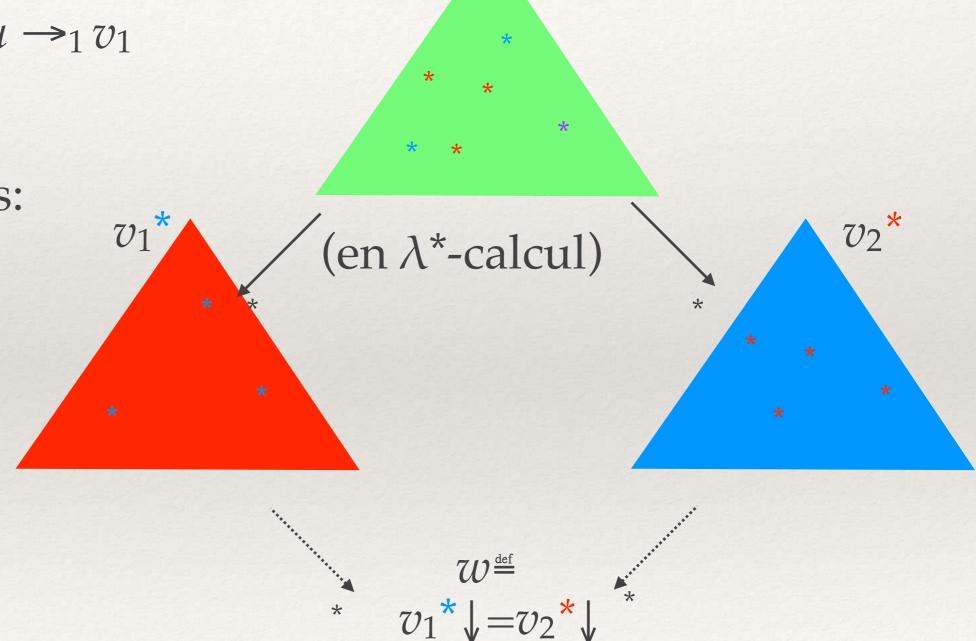
$$w \stackrel{\text{def}}{=} (un \stackrel{\text{i.i.}}{v_1} \text{-terme})$$
 $v_1 \stackrel{\text{i.i.}}{\downarrow} = v_2 \stackrel{\text{i.i.}}{\downarrow}$

(les formes normales existent et sont uniques en λ^* -calcul)



* Superposons:

* Donc $v_1 \rightarrow_1 w \text{ et}$ $v_2 \rightarrow_1 w$

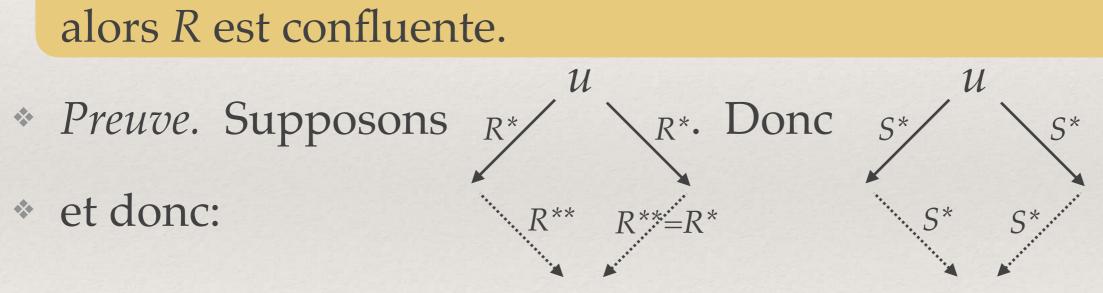


U

(les formes normales existent et sont uniques en λ^* -calcul)

Confluence de →

- * **Lemme.** Si *R* et *S* sont deux relations binaires, et:
 - $(1) R \subseteq S \subseteq R^*$
 - (2) *S* est confluente alors R est confluente.



* On prend maintenant $R^{\text{def}} \rightarrow$, $S^{\text{def}} \rightarrow_1$: comme \rightarrow_1 est fortement confluente, elle est confluente, et donc → aussi

Confluence de →

- * **Théorème.** Le λ -calcul avec β -réduction est confluent.
- * La preuve usuelle utilise une notion de **réductions parallèles**... que vous verrez en TD.
- * Si vous regardez bien, vous verrez que la relation de réduction parallèle est en fait identique à \rightarrow_1

La prochaine fois

La prochaine fois

- Pouvoir expressif:
 machines de Turing ≡ fonctions récursives ≡ λ-calcul
- * Combinateurs de point fixe