
Propriétés du λσ-calcul



Questions

❖ Le λσ-calcul implémente-t-il correctement le λ-calcul?

❖ Le λσ-calcul est-il confluent?           (Faciliterait les implémentations…)

❖ Propriétés de normalisation forte/faible?

❖ Qu’en est-il du sous-calcul σ?  Confluent? Terminant?



Le sous-calcul σ des substitutions

❖ Prop. σ est localement confluent.

❖ On a tout fait pour!

❖ Preuve: il y a des programmes 
implémentant Knuth-Bendix pour 
vérifier ça…  (ne le faites pas à la main!)



Le sous-calcul σ des substitutions
❖ σ est localement confluent.

❖ Nous allons montrer que 
σ termine.

❖ Ceci nécessitera quelques efforts…

❖ Une fois ceci fait, le lemme de 
Newman nous dira que 
tout λσ-terme 
a une σ-forme normale unique.



Le sous-calcul σ des substitutions
❖ σ est localement confluent.

❖ Nous allons montrer que 
σ termine.

❖ Ceci nécessitera quelques efforts…

❖ Une fois ceci fait, le lemme de 
Newman nous dira que 
tout λσ-terme 
a une σ-forme normale unique.

Pour ça, je vais vous 
parler d’une technique 
de preuve de 
terminaison très 
pratique:
les recursive path 
orderings (rpo);
ici le lexicographic path 
ordering (lpo).



Terminaison des systèmes de réécriture

❖ Systèmes de règles  
entre expressions de la logique du premier ordre

ℓ ← r

❖ Comme σ



Terminaison des systèmes de réécriture

❖ Systèmes de règles  
entre expressions de la logique du premier ordre

ℓ ← r

❖ Comme σ

❖ Comme →ℕ



Terminaison des systèmes de réécriture

❖ Systèmes de règles  
entre expressions de la logique du premier ordre

ℓ ← r

❖ Comme σ

❖ Comme →ℕ

❖ Comme encore 
bien d’autres

où l’on considère une infinité de symboles ∘!, ! ≥ 0.
On vérifie alors que, pour toute règle " → # du système ci-dessus, on peut réécrire [[$ ]] en [[% ]] par les

règles suivantes (par convention, & est ℓ($), ! est ℓ(%), ( est ℓ() )):

(*$) ∘"+#+1 ) → *($ ∘"+# (1 ⋅ ()∘# ↑)))
1 ∘max(",!) ($ ⋅%) → $
↑ ∘max(",!)($ ⋅%) → %

+, ∘" $ → $
$ ∘" +, → $

($ ∘"+! %) ∘"+!+# ) → $ ∘"+!+# (% ∘!+# ) )
($ ⋅%) ∘max(",!)+# ) → ($ ∘"+# ) ) ⋅ (% ∘!+# ) )

1⋅ ↑ → +,
(1 ∘" $) ⋅ (↑ ∘"$) → $

Comme $ → % implique ℓ($) ≥ ℓ(%), on en déduit par une récurrence immédiate sur la profondeur du
rédex contracté dans $ que $ → % dans le système sans indices implique [[$ ]] →+ [[% ]] dans le système
de réécriture ci-dessus, plus les règles:

(,-.!) $ ∘! % → $ ∘" %

pour tous ! > &. Appelons 01234∗ ce système, incluant les règles (,-.!). (Par exemple, si $ = $1 ∘$2 et
% = %1 ∘$2, avec $1 → %1, par hypothèse de récurrence [[$1]] →+ [[%1]], donc [[$ ]] →+ [[%1]] ∘ℓ(&1)+ℓ(&2)

[[$2]] →∗ [[%1]] ∘ℓ('1)+ℓ(&2) [[$2]] = [[% ]] par (,-.!), puisque ℓ($1) ≥ ℓ(%1).)
Or il est maintenant facile de voir que 01234∗ termine, en utilisant un lpo ≻(#) avec ≻ défini par . . . ≻

∘!+1 ≻ ∘! ≻ . . . ≻ ∘1 ≻ ∘0 ≻ *, 1, ⋅, ↑ et 1, ⋅, ↑≻ +,. ♦

Exercice 13 Montrer que le système de réécriture suivant termine, où 7* est un opérateur censé représenter
la dérivation par rapport à 8 ∂/∂8:

7*(8) → 1
7*(;) → 0

7*($ +%) → 7*($) +7*(%)
7*($ ×%) → 7*($)×% +$ ×7*(%)
7*($ −%) → 7*($)−7*(%)

7*(−$) → −7*($)

7*($/%) →
(

7*($)×% −$ ×7*(%)
)

/%2

7*(log($)) → 7*($)/$
7*($' ) → % × ($'−1 ×7*($)) +$' × (log($)×7*(%))
0 +% → % $ + 0 → $

0($) +% → 0($ +%) $ + 0(%) → 0($ +%)
($ +%) + ) → $ + (% + ) ) 0($)− 0(%) → $ −%

0×% → 0 $ × 0 → 0
0($)×% → $ ×% +% $ × 0(%) → $ +$ ×%

($ +$ ′)×% → $ ×% +$ ′ ×% $ × (% +% ′) → $ ×% +$ ×% ′

($ ×%)× ) → $ × (% × ) )

(1 dénotant 0(0), et 2 dénotant 0(1).)

Corollaire 2 Le <-calcul est confluent.

Preuve : Par le lemme de Newman et les résultats précédents. ♦

Théorème 3 (=-réduction) Si 1 → > par =-réduction, alors 1∗(ℓ) →+ >∗(ℓ) en *<, pour toute liste ℓ de
variables.
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La technique des ordres bien fondés
❖ Trouver un ordre strict bien fondé > 

sur les expressions tel que: 
— pour toute règle ,  
— passage au contexte: 
     si u > v alors f(…, u, …) > f(…, v, …)

ℓ ← r ℓ > r



La technique des ordres bien fondés
❖ Trouver un ordre strict bien fondé > 

sur les expressions tel que: 
— pour toute règle ,  
— passage au contexte: 
     si u > v alors f(…, u, …) > f(…, v, …)

ℓ ← r ℓ > r

= sans chaîne infinie
   décroissante 
   u0 > u1 > … > un > …



La technique des ordres bien fondés
❖ Trouver un ordre strict bien fondé > 

sur les expressions tel que: 
— pour toute règle ,  
— passage au contexte: 
     si u > v alors f(…, u, …) > f(…, v, …)

ℓ ← r ℓ > r

❖ Si u → v, alors u > v.

= sans chaîne infinie
   décroissante 
   u0 > u1 > … > un > …



La technique des ordres bien fondés
❖ Trouver un ordre strict bien fondé > 

sur les expressions tel que: 
— pour toute règle ,  
— passage au contexte: 
     si u > v alors f(…, u, …) > f(…, v, …)

ℓ ← r ℓ > r

❖ Si u → v, alors u > v.

❖ Donc pas de réduction infinie: 
si u=u0 → u1 → … → un →∞ … alors u=u0 > u1 > … > un > …

= sans chaîne infinie
   décroissante 
   u0 > u1 > … > un > …



La technique des ordres bien fondés
❖ Trouver un ordre strict bien fondé > 

sur les expressions tel que: 
— pour toute règle ,  
— passage au contexte: 
     si u > v alors f(…, u, …) > f(…, v, …)

ℓ ← r ℓ > r

❖ Si u → v, alors u > v.

❖ Donc pas de réduction infinie: 
si u=u0 → u1 → … → un →∞ … alors u=u0 > u1 > … > un > …

❖ Pour →ℕ, on avait défini e>e’ ssi [e]>[e’]

= sans chaîne infinie
   décroissante 
   u0 > u1 > … > un > …



Ordre lexicographique

❖ Soit >, >’ deux ordres stricts. 
On pose (u, u’) (> × >’)lex (v, v’) ssi 
           — u>v ou 
           — u=v et u’>v'

❖ Prop.  Si > et >’ bien fondés, alors (> × >’)lex aussi.

❖ Preuve (esquisse).  Si chaîne infinie décroissante, alors à 
partir d’un certain rang: les u sont égaux; 
    puis il n’y plus qu’un nb. fini d’étapes où v décroît.  ☐



Extension lexicographique
❖ Soit > ordre strict. 

On pose (u1, …, um) >lex (v1, …, vn) ssi 
           — m>n ou 
           — m=n et u1=v1 et … et ui–1=vi–1 et ui>vi  
                             pour un certain i, 1≤i≤n

❖ Prop.  Si > bien fondé, alors >lex aussi.

❖ Preuve (esquisse).  Si chaîne infinie décroissante, alors à 
partir d’un certain rang: les m sont égaux; 
                                           puis les u1; …; puis les um.  ☐



Le lpo
❖ On se fixe un ordre strict > sur les symboles de fonction 

(la précédence)

❖ On définit >lpo sur les expressions closes par les règles:

où s=f(s1, …, sm) 
      t=g(t1, …, tn)

[≥lpo abrège (>lpo ou =)]

si ≥lpo t

s >lpo t

(∃i) (∀j) s >lpo tj

s >lpo t

(f,(s1, …, sm)) ≫ (g,(t1, …, tn))

[≫ abrège (> × (>lpo)lex)lex]



Le lpo
❖ On se fixe un ordre strict > sur les symboles de fonction 

(la précédence)

❖ On définit >lpo sur les expressions closes par les règles:

où s=f(s1, …, sm) 
      t=g(t1, …, tn)

[≥lpo abrège (>lpo ou =)]

si ≥lpo t

s >lpo t

(∃i) (∀j) s >lpo tj

s >lpo t

(f,(s1, …, sm)) ≫ (g,(t1, …, tn))

Permet notamment de conclure que
            f(s1, …, sm) >lpo si

[≫ abrège (> × (>lpo)lex)lex]



Le lpo
❖ On se fixe un ordre strict > sur les symboles de fonction 

(la précédence)

❖ On définit >lpo sur les expressions closes par les règles:

où s=f(s1, …, sm) 
      t=g(t1, …, tn)

[≥lpo abrège (>lpo ou =)]

si ≥lpo t

s >lpo t

(∃i) (∀j) s >lpo tj

s >lpo t

(f,(s1, …, sm)) ≫ (g,(t1, …, tn))

Permet notamment de conclure que
            f(s1, …, sm) >lpo si

C’est-à-dire:
f>g ou bien
(f=g et: m>n ou
             m=n et: s1>lpot1 ou
                           s1=t1 et: s2>lpot2 ou 
            etc.)

[≫ abrège (> × (>lpo)lex)lex]



Le lpo
❖ On se fixe un ordre strict > sur les symboles de fonction 

(la précédence)

❖ On définit >lpo sur les expressions closes par les règles:

où s=f(s1, …, sm) 
      t=g(t1, …, tn)

[≥lpo abrège (>lpo ou =)]

si ≥lpo t

s >lpo t

(∃i) (∀j) s >lpo tj

s >lpo t

(f,(s1, …, sm)) ≫ (g,(t1, …, tn))

Permet notamment de conclure que
            f(s1, …, sm) >lpo si

C’est-à-dire:
f>g ou bien
(f=g et: m>n ou
             m=n et: s1>lpot1 ou
                           s1=t1 et: s2>lpot2 ou 
            etc.)

Ça, c’est pour éviter que les tj ne 
grossissent trop.  Par ex., si f>g:
            s = f(s1) ≫ g(s)
mais s → g(s) → g(g(s)) → …
            réduction infinie

[≫ abrège (> × (>lpo)lex)lex]



Propriétés élémentaires du lpo
❖ >lpo est un ordre strict 

(et même total si > est total)



Propriétés élémentaires du lpo
❖ >lpo est un ordre strict 

(et même total si > est total)

❖ … qui passe au contexte



Propriétés élémentaires du lpo
❖ >lpo est un ordre strict 

(et même total si > est total)

❖ … qui passe au contexte

❖ … qui a la propriété de sous-terme: 
si t est un sous-terme strict de s (en notation s ⊳t), 
                  alors s >lpo t



Propriétés élémentaires du lpo
❖ >lpo est un ordre strict 

(et même total si > est total)

❖ … qui passe au contexte

❖ … qui a la propriété de sous-terme: 
si t est un sous-terme strict de s (en notation s ⊳t), 
                  alors s >lpo t

❖ … et bien fondé si > est bien fondé 
(preuve: transparents suivants, après l’exemple)



Lpo: exemple 1
❖ Comment montrer que →ℕ termine 

sans se fatiguer

❖ Précédence:      ≈ > ⊥     * > + > S

s+S(t) >lpo S(s+t)

?



Lpo: exemple 1
❖ Comment montrer que →ℕ termine 

sans se fatiguer

❖ Précédence:      ≈ > ⊥     * > + > S

s+S(t) >lpo S(s+t)
s+S(t) >lpo s+t

?

Règle de droite (car + > S)



Lpo: exemple 1
❖ Comment montrer que →ℕ termine 

sans se fatiguer

❖ Précédence:      ≈ > ⊥     * > + > S

s+S(t) >lpo S(s+t)
Règle de droite (car + > S)

s+S(t) >lpo s+t
Règle de droite (ici +=+, s=s et on vérifie S(t) >lpo t)

S(t) >lpo t
s+S(t) >lpo s s+S(t) >lpo t



Lpo: exemple 1
❖ Comment montrer que →ℕ termine 

sans se fatiguer

❖ Précédence:      ≈ > ⊥     * > + > S

s+S(t) >lpo S(s+t)
Règle de droite (car + > S)

s+S(t) >lpo s+t
Règle de droite (ici +=+, s=s et on vérifie S(t) >lpo t)

S(t) >lpo t
s+S(t) >lpo s s+S(t) >lpo t Sous-terme!  (ou bien règle de gauche)



Lpo: exemple 1
❖ Comment montrer que →ℕ termine 

sans se fatiguer

❖ Précédence:      ≈ > ⊥     * > + > S

s+S(t) >lpo S(s+t)
Règle de droite (car + > S)

s+S(t) >lpo s+t
Règle de droite (ici +=+, s=s et on vérifie S(t) >lpo t)

S(t) >lpo t
s+S(t) >lpo s s+S(t) >lpo t Sous-terme!  (ou bien règle de gauche)

Je vous laisse vérifier les autres règles (exercice!)



Lpo: exemple 2
❖ Plus compliqué?

❖ Pas du tout, 
c’est totalement 
mécanique

❖ Précédence: 
Dx > 1, 0, +, ×, –, /, ^

où l’on considère une infinité de symboles ∘!, ! ≥ 0.
On vérifie alors que, pour toute règle " → # du système ci-dessus, on peut réécrire [[$ ]] en [[% ]] par les

règles suivantes (par convention, & est ℓ($), ! est ℓ(%), ( est ℓ() )):

(*$) ∘"+#+1 ) → *($ ∘"+# (1 ⋅ ()∘# ↑)))
1 ∘max(",!) ($ ⋅%) → $
↑ ∘max(",!)($ ⋅%) → %

+, ∘" $ → $
$ ∘" +, → $

($ ∘"+! %) ∘"+!+# ) → $ ∘"+!+# (% ∘!+# ) )
($ ⋅%) ∘max(",!)+# ) → ($ ∘"+# ) ) ⋅ (% ∘!+# ) )

1⋅ ↑ → +,
(1 ∘" $) ⋅ (↑ ∘"$) → $

Comme $ → % implique ℓ($) ≥ ℓ(%), on en déduit par une récurrence immédiate sur la profondeur du
rédex contracté dans $ que $ → % dans le système sans indices implique [[$ ]] →+ [[% ]] dans le système
de réécriture ci-dessus, plus les règles:

(,-.!) $ ∘! % → $ ∘" %

pour tous ! > &. Appelons 01234∗ ce système, incluant les règles (,-.!). (Par exemple, si $ = $1 ∘$2 et
% = %1 ∘$2, avec $1 → %1, par hypothèse de récurrence [[$1]] →+ [[%1]], donc [[$ ]] →+ [[%1]] ∘ℓ(&1)+ℓ(&2)

[[$2]] →∗ [[%1]] ∘ℓ('1)+ℓ(&2) [[$2]] = [[% ]] par (,-.!), puisque ℓ($1) ≥ ℓ(%1).)
Or il est maintenant facile de voir que 01234∗ termine, en utilisant un lpo ≻(#) avec ≻ défini par . . . ≻

∘!+1 ≻ ∘! ≻ . . . ≻ ∘1 ≻ ∘0 ≻ *, 1, ⋅, ↑ et 1, ⋅, ↑≻ +,. ♦

Exercice 13 Montrer que le système de réécriture suivant termine, où 7* est un opérateur censé représenter
la dérivation par rapport à 8 ∂/∂8:

7*(8) → 1
7*(;) → 0

7*($ +%) → 7*($) +7*(%)
7*($ ×%) → 7*($)×% +$ ×7*(%)
7*($ −%) → 7*($)−7*(%)

7*(−$) → −7*($)

7*($/%) →
(

7*($)×% −$ ×7*(%)
)

/%2

7*(log($)) → 7*($)/$
7*($' ) → % × ($'−1 ×7*($)) +$' × (log($)×7*(%))
0 +% → % $ + 0 → $

0($) +% → 0($ +%) $ + 0(%) → 0($ +%)
($ +%) + ) → $ + (% + ) ) 0($)− 0(%) → $ −%

0×% → 0 $ × 0 → 0
0($)×% → $ ×% +% $ × 0(%) → $ +$ ×%

($ +$ ′)×% → $ ×% +$ ′ ×% $ × (% +% ′) → $ ×% +$ ×% ′

($ ×%)× ) → $ × (% × ) )

(1 dénotant 0(0), et 2 dénotant 0(1).)

Corollaire 2 Le <-calcul est confluent.

Preuve : Par le lemme de Newman et les résultats précédents. ♦

Théorème 3 (=-réduction) Si 1 → > par =-réduction, alors 1∗(ℓ) →+ >∗(ℓ) en *<, pour toute liste ℓ de
variables.
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Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}

❖ Supposons > bien fondé



Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}
❖ Supposons Acc – Acc non vide

❖ Supposons > bien fondé



Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.

Acc r Acc

8

°mpo

°mpo°mpo°mpo

Ÿ-minimal

8

8

t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

=

every †-accessible x: p˚q for every M P Acc, M Z t|x|u P Acc. Fix an †-accessible
x, and use †-induction. This provides us with the induction hypothesis: paq for
every y † x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
†mul-induction on M P Acc that: p˚˚q M Z t|x|u P Acc. This gives us the extra
induction hypothesis pbq: for every M 1

†mul M , M 1
Z t|x|u P Acc. It now remains

to show that paq and pbq imply p˚˚q. By definition of †mul-accessibility, this
means showing that every multiset M1 †mul M Z t|x|u is in Acc. There are two
cases: either M1 “ M 1

Z t|x|u for some M 1
†mul M , and the claim follows from

pbq; or M1 “ M Z t|x1, . . . , xm|u with x ° x1, . . . , xm, then the claim follows by
induction on m, using pbq in the base case and paq in the induction step. [\

It follows that, under the same assumptions, the transitive closure †
`
mul of †mul

is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.
Let now ⌃ be a signature, i.e., just a set whose elements will be understood

as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The

relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f †-accessible and s1, . . . , sm †

mpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f †-accessible and s1, . . . , sm †

mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not †-accessible, or where some tj is not †

mpo-accessible. Intuitionistically,

Acc – Acc

❖ ≫ est bien fondé sur Acc – Acc 
(car produit lexico.): soit s ≫-minimal dedans

❖ Supposons Acc – Acc non vide

❖ Supposons > bien fondé



Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

=

every †-accessible x: p˚q for every M P Acc, M Z t|x|u P Acc. Fix an †-accessible
x, and use †-induction. This provides us with the induction hypothesis: paq for
every y † x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
†mul-induction on M P Acc that: p˚˚q M Z t|x|u P Acc. This gives us the extra
induction hypothesis pbq: for every M 1

†mul M , M 1
Z t|x|u P Acc. It now remains

to show that paq and pbq imply p˚˚q. By definition of †mul-accessibility, this
means showing that every multiset M1 †mul M Z t|x|u is in Acc. There are two
cases: either M1 “ M 1

Z t|x|u for some M 1
†mul M , and the claim follows from

pbq; or M1 “ M Z t|x1, . . . , xm|u with x ° x1, . . . , xm, then the claim follows by
induction on m, using pbq in the base case and paq in the induction step. [\

It follows that, under the same assumptions, the transitive closure †
`
mul of †mul

is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.
Let now ⌃ be a signature, i.e., just a set whose elements will be understood

as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The

relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f †-accessible and s1, . . . , sm †

mpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f †-accessible and s1, . . . , sm †

mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not †-accessible, or where some tj is not †

mpo-accessible. Intuitionistically,

Acc – Acc

❖ ≫ est bien fondé sur Acc – Acc 
(car produit lexico.): soit s ≫-minimal dedans

❖ s n’est pas dans Acc: démarre une chaîne infinie

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

=

. 

. 

.

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

❖ Supposons Acc – Acc non vide
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Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

=

every †-accessible x: p˚q for every M P Acc, M Z t|x|u P Acc. Fix an †-accessible
x, and use †-induction. This provides us with the induction hypothesis: paq for
every y † x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
†mul-induction on M P Acc that: p˚˚q M Z t|x|u P Acc. This gives us the extra
induction hypothesis pbq: for every M 1

†mul M , M 1
Z t|x|u P Acc. It now remains

to show that paq and pbq imply p˚˚q. By definition of †mul-accessibility, this
means showing that every multiset M1 †mul M Z t|x|u is in Acc. There are two
cases: either M1 “ M 1

Z t|x|u for some M 1
†mul M , and the claim follows from

pbq; or M1 “ M Z t|x1, . . . , xm|u with x ° x1, . . . , xm, then the claim follows by
induction on m, using pbq in the base case and paq in the induction step. [\

It follows that, under the same assumptions, the transitive closure †
`
mul of †mul

is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.
Let now ⌃ be a signature, i.e., just a set whose elements will be understood

as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The

relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f †-accessible and s1, . . . , sm †

mpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f †-accessible and s1, . . . , sm †

mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not †-accessible, or where some tj is not †

mpo-accessible. Intuitionistically,

Acc – Acc

❖ ≫ est bien fondé sur Acc – Acc 
(car produit lexico.): soit s ≫-minimal dedans

❖ s n’est pas dans Acc: démarre une chaîne infinie

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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❖ parmi ces chaînes, on en choisit une où le 
2ème élément t est ⊳-minimal (⊳=sous-terme) 

❖ Supposons Acc – Acc non vide

>lpo

>lpo

>lpo

❖ Supposons > bien fondé



Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.

Acc r Acc

8

°mpo

°mpo°mpo°mpo

Ÿ-minimal

8

8

t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

=

every †-accessible x: p˚q for every M P Acc, M Z t|x|u P Acc. Fix an †-accessible
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†mul M , M 1
Z t|x|u P Acc. It now remains
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means showing that every multiset M1 †mul M Z t|x|u is in Acc. There are two
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`
mul of †mul
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or because si °
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have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then
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we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.
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accessible. In particular, if † is well-founded, then †
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This requires us to show first that if u « t and t °
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that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
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Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
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We first give a classical argument, in the hope that it
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is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °
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Acc r Acc

8

°mpo

°mpo°mpo°mpo

Ÿ-minimal

8

8

t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

❖ parmi ces chaînes, on en choisit une où le 
2ème élément t est ⊳-minimal (⊳=sous-terme) 

. 

. 

.

:
. Since 8

, . . . , tnq
mpo tj

, . . . , t

: non

❖ Supposons Acc – Acc non vide

>lpo

>lpo

>lpo

>lpo

>lpo

>lpo

❖ Supposons > bien fondé



Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.

Acc r Acc

8

°mpo

°mpo°mpo°mpo

Ÿ-minimal

8

8

t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

=

every †-accessible x: p˚q for every M P Acc, M Z t|x|u P Acc. Fix an †-accessible
x, and use †-induction. This provides us with the induction hypothesis: paq for
every y † x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
†mul-induction on M P Acc that: p˚˚q M Z t|x|u P Acc. This gives us the extra
induction hypothesis pbq: for every M 1

†mul M , M 1
Z t|x|u P Acc. It now remains

to show that paq and pbq imply p˚˚q. By definition of †mul-accessibility, this
means showing that every multiset M1 †mul M Z t|x|u is in Acc. There are two
cases: either M1 “ M 1

Z t|x|u for some M 1
†mul M , and the claim follows from

pbq; or M1 “ M Z t|x1, . . . , xm|u with x ° x1, . . . , xm, then the claim follows by
induction on m, using pbq in the base case and paq in the induction step. [\

It follows that, under the same assumptions, the transitive closure †
`
mul of †mul

is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.
Let now ⌃ be a signature, i.e., just a set whose elements will be understood

as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °
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chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

=

every †-accessible x: p˚q for every M P Acc, M Z t|x|u P Acc. Fix an †-accessible
x, and use †-induction. This provides us with the induction hypothesis: paq for
every y † x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
†mul-induction on M P Acc that: p˚˚q M Z t|x|u P Acc. This gives us the extra
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†mul M , M 1
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induction on m, using pbq in the base case and paq in the induction step. [\

It follows that, under the same assumptions, the transitive closure †
`
mul of †mul

is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.
Let now ⌃ be a signature, i.e., just a set whose elements will be understood

as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The

relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f †-accessible and s1, . . . , sm †

mpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f †-accessible and s1, . . . , sm †

mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not †-accessible, or where some tj is not †

mpo-accessible. Intuitionistically,

Acc – Acc

❖ ≫ est bien fondé sur Acc – Acc 
(car produit lexico.): soit s ≫-minimal dedans

❖ s n’est pas dans Acc: démarre une chaîne infinie

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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❖ parmi ces chaînes, on en choisit une où le 
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mpo tj

, . . . , t

: non

❖ Supposons Acc – Acc non vide

>lpo

>lpo

>lpo

>lpo

>lpo

>lpo

❖ Supposons > bien fondé



Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}
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Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj
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fps1, . . . , smq °
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mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then
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every †-accessible x: p˚q for every M P Acc, M Z t|x|u P Acc. Fix an †-accessible
x, and use †-induction. This provides us with the induction hypothesis: paq for
every y † x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
†mul-induction on M P Acc that: p˚˚q M Z t|x|u P Acc. This gives us the extra
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It follows that, under the same assumptions, the transitive closure †
`
mul of †mul

is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.
Let now ⌃ be a signature, i.e., just a set whose elements will be understood

as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
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fps1, . . . , smq " fpt1, . . . , tnq
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`
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Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.
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We first give a classical argument, in the hope that it
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tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
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so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
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for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °
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tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
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will be clearer. We shall need to use the immediate sub-
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tion. Assume there is term s P Acc that is not in Acc. In
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so there is a !-minimal element s in Acc r Acc. Since
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tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
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will be clearer. We shall need to use the immediate sub-
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tion. Assume there is term s P Acc that is not in Acc. In
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will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.

Acc r Acc

8

°mpo

°mpo°mpo°mpo

Ÿ-minimal

8

8

t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
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We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
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every †-accessible x: p˚q for every M P Acc, M Z t|x|u P Acc. Fix an †-accessible
x, and use †-induction. This provides us with the induction hypothesis: paq for
every y † x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
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[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The

relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f †-accessible and s1, . . . , sm †

mpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f †-accessible and s1, . . . , sm †

mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not †-accessible, or where some tj is not †

mpo-accessible. Intuitionistically,

Acc – Acc

❖ ≫ est bien fondé sur Acc – Acc 
(car produit lexico.): soit s ≫-minimal dedans

❖ s n’est pas dans Acc: démarre une chaîne infinie

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then
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so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

every †-accessible x: p˚q for every M P Acc, M Z t|x|u P Acc. Fix an †-accessible
x, and use †-induction. This provides us with the induction hypothesis: paq for
every y † x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
†mul-induction on M P Acc that: p˚˚q M Z t|x|u P Acc. This gives us the extra
induction hypothesis pbq: for every M 1

†mul M , M 1
Z t|x|u P Acc. It now remains

to show that paq and pbq imply p˚˚q. By definition of †mul-accessibility, this
means showing that every multiset M1 †mul M Z t|x|u is in Acc. There are two
cases: either M1 “ M 1

Z t|x|u for some M 1
†mul M , and the claim follows from

pbq; or M1 “ M Z t|x1, . . . , xm|u with x ° x1, . . . , xm, then the claim follows by
induction on m, using pbq in the base case and paq in the induction step. [\

It follows that, under the same assumptions, the transitive closure †
`
mul of †mul

is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.
Let now ⌃ be a signature, i.e., just a set whose elements will be understood

as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
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mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The
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Le lpo est bien fondé
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[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The

relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f †-accessible and s1, . . . , sm †

mpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f †-accessible and s1, . . . , sm †

mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not †-accessible, or where some tj is not †

mpo-accessible. Intuitionistically,

Acc – Acc

❖ ≫ est bien fondé sur Acc – Acc 
(car produit lexico.): soit s ≫-minimal dedans

❖ s n’est pas dans Acc: démarre une chaîne infinie

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then
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so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
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induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
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every y † x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
†mul-induction on M P Acc that: p˚˚q M Z t|x|u P Acc. This gives us the extra
induction hypothesis pbq: for every M 1

†mul M , M 1
Z t|x|u P Acc. It now remains

to show that paq and pbq imply p˚˚q. By definition of †mul-accessibility, this
means showing that every multiset M1 †mul M Z t|x|u is in Acc. There are two
cases: either M1 “ M 1

Z t|x|u for some M 1
†mul M , and the claim follows from

pbq; or M1 “ M Z t|x1, . . . , xm|u with x ° x1, . . . , xm, then the claim follows by
induction on m, using pbq in the base case and paq in the induction step. [\

It follows that, under the same assumptions, the transitive closure †
`
mul of †mul

is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.
Let now ⌃ be a signature, i.e., just a set whose elements will be understood

as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.
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variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The

relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f †-accessible and s1, . . . , sm †

mpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f †-accessible and s1, . . . , sm †

mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not †-accessible, or where some tj is not †

mpo-accessible. Intuitionistically,

Acc – Acc

❖ ≫ est bien fondé sur Acc – Acc 
(car produit lexico.): soit s ≫-minimal dedans

❖ s n’est pas dans Acc: démarre une chaîne infinie

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.

Acc r Acc

8

°mpo

°mpo°mpo°mpo

Ÿ-minimal

8

8

t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the
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chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
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many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The

relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f †-accessible and s1, . . . , sm †

mpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f †-accessible and s1, . . . , sm †

mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not †-accessible, or where some tj is not †

mpo-accessible. Intuitionistically,

Acc – Acc

❖ ≫ est bien fondé sur Acc – Acc 
(car produit lexico.): soit s ≫-minimal dedans

❖ s n’est pas dans Acc: démarre une chaîne infinie

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
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induction hypothesis pbq: for every M 1

†mul M , M 1
Z t|x|u P Acc. It now remains

to show that paq and pbq imply p˚˚q. By definition of †mul-accessibility, this
means showing that every multiset M1 †mul M Z t|x|u is in Acc. There are two
cases: either M1 “ M 1
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is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.
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as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.
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as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The

relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f †-accessible and s1, . . . , sm †

mpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f †-accessible and s1, . . . , sm †

mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not †-accessible, or where some tj is not †

mpo-accessible. Intuitionistically,

Acc – Acc

❖ ≫ est bien fondé sur Acc – Acc 
(car produit lexico.): soit s ≫-minimal dedans

❖ s n’est pas dans Acc: démarre une chaîne infinie

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
mpo is well-founded on

terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
mpo-accessible.

This requires us to show first that if u « t and t °
mpo s, then u °

mpo s, an easy
induction on the definition of †

mpo. We show p˚q by †
mpo-induction on u, i.e.,

that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.

Acc r Acc

8

°mpo

°mpo°mpo°mpo

Ÿ-minimal

8

8

t “ gpt1, . . . , tnq

s “ fps1, . . . , smq
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so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
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tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.
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is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.

Acc r Acc

8

°mpo

°mpo°mpo°mpo

Ÿ-minimal

8

8

t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

=

. 

. 

.

we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.
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other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °
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for some t R Acc. Among these terms t we pick one that
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that for every j such that s °
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chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
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we define the restriction !|Acc of ! to Acc by t !|Acc s iff t P Acc and s P Acc

and t ! s; and we note that every term in Acc is !|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all †-accessible is †
mpo-

accessible. In particular, if † is well-founded, then †
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terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
†

mpo-accessible term u, for every term t such that u « t, t is †
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This requires us to show first that if u « t and t °
mpo s, then u °
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induction on the definition of †

mpo. We show p˚q by †
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that for every t such that u « t, for every s †
mpo t, s is †

mpo-accessible; the
assumptions imply s †

mpo u, and the claim follows by induction hypothesis.
Let Acc be the set of †

mpo-accessible terms, and W be the set of terms whose
function symbols are all †-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is †-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t P W is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq ô

tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite °

mpo-chain, so s °
mpo t

for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s °

mpo tj , tj P Acc.
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t “ gpt1, . . . , tnq
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The fact s °
mpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the

question, though, since that would mean s “ fps1, . . . , smq with some si °„
mpo t;

but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si °

mpo t, using †
mpo-inversion: contradiction. So rule pGtq must

have been used: s " t “ gpt1, . . . , tnq with s °
mpo tj for every j. Since s was

chosen "-minimal, t cannot be in Accr Acc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s °

mpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then

every †-accessible x: p˚q for every M P Acc, M Z t|x|u P Acc. Fix an †-accessible
x, and use †-induction. This provides us with the induction hypothesis: paq for
every y † x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
†mul-induction on M P Acc that: p˚˚q M Z t|x|u P Acc. This gives us the extra
induction hypothesis pbq: for every M 1

†mul M , M 1
Z t|x|u P Acc. It now remains

to show that paq and pbq imply p˚˚q. By definition of †mul-accessibility, this
means showing that every multiset M1 †mul M Z t|x|u is in Acc. There are two
cases: either M1 “ M 1

Z t|x|u for some M 1
†mul M , and the claim follows from

pbq; or M1 “ M Z t|x1, . . . , xm|u with x ° x1, . . . , xm, then the claim follows by
induction on m, using pbq in the base case and paq in the induction step. [\

It follows that, under the same assumptions, the transitive closure †
`
mul of †mul

is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.
Let now ⌃ be a signature, i.e., just a set whose elements will be understood

as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of ⌃ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation ⇡ of t1, . . . , nu such that
s⇡piq « ti for each i, 1 § i § n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation † on ⌃. The multiset path ordering, or
mpo, †

mpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si °„
mpo t

pSubq
fps1, . . . , smq °

mpo t

fps1, . . . , smq " gpt1, . . . , tnq

@j ¨ fps1, . . . , smq °
mpo tj

pGtq
fps1, . . . , smq °

mpo gpt1, . . . , tnq

where s °„
mpo t abbreviates s °

mpo t or s « t, and here are the clauses for !:

f ° g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u p°
mpo

q
`
mul t|t1, . . . , tn|u

p" Argsq

fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of † and of p†
mpo

q
`
mul. The

relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f †-accessible and s1, . . . , sm †

mpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f †-accessible and s1, . . . , sm †

mpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not †-accessible, or where some tj is not †

mpo-accessible. Intuitionistically,

: non

❖ Supposons Acc – Acc non vide

>lpo

>lpo

>lpo

>lpo

>lpo

>lpo
t ∉ Acc, sinon t serait dans Acc – Acc,

Donc il existe un tj ∉ Acc
Mais s >lpo tj :

Impossible!

❖ Supposons > bien fondé

… contredisant la ≫-minimalité de s, puisque s ≫ t

on a dit non! (t pas ⊳-minimal)



Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}
❖ Donc Acc – Acc est vide.

❖ Supposons > bien fondé



Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}
❖ Donc Acc – Acc est vide.
❖ Autrement dit: pour tout s=f(s1,…,sm), 

                           si tous les si sont dans Acc (i.e., si s ∈ Acc) 
                           alors s est dans Acc.

❖ Supposons > bien fondé
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             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}
❖ Donc Acc – Acc est vide.
❖ Autrement dit: pour tout s=f(s1,…,sm), 

                           si tous les si sont dans Acc (i.e., si s ∈ Acc) 
                           alors s est dans Acc.

❖ Donc, par récurrence sur (la taille de) s:
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Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}
❖ Donc Acc – Acc est vide.
❖ Autrement dit: pour tout s=f(s1,…,sm), 

                           si tous les si sont dans Acc (i.e., si s ∈ Acc) 
                           alors s est dans Acc.

❖ Donc, par récurrence sur (la taille de) s:
❖ Thm.  Toute expression s est dans Acc.

❖ Supposons > bien fondé



Le lpo est bien fondé
Soit: Acc la partie bien fondée de >lpo 

             = {s | pas de chaîne infinie décroissante 
                    pour >lpo partant de s} 
Acc = {f(s1,…,sm)| tout si est dans Acc}
❖ Donc Acc – Acc est vide.
❖ Autrement dit: pour tout s=f(s1,…,sm), 

                           si tous les si sont dans Acc (i.e., si s ∈ Acc) 
                           alors s est dans Acc.

❖ Donc, par récurrence sur (la taille de) s:
❖ Thm.  Toute expression s est dans Acc.
❖             I.e., >lpo est bien fondé (si > est bien fondé).

❖ Supposons > bien fondé



Et pour σ?

❖ Ça ne fonctionne pas

❖ Quelle que soit la 
précédence choisie, 
vous aurez 
des problèmes avec 
    (λM)[S] → λ(M[1 · (S ○ ↑)])



Et pour σ?

❖ Ça ne fonctionne pas

❖ Quelle que soit la 
précédence choisie, 
vous aurez 
des problèmes avec 
    (λM)[S] → λ(M[1 · (S ○ ↑)])

❖ En fait, la terminaison de σ 
est un problème difficile.

❖ Nous verrons une preuve 
due à Hans Zantema.

https://www.win.tue.nl/~hzantema/hznaw.jpg



1/3: simplification
❖ On traduit les λσ-termes 

en remplaçant 
[] par ○, @ par ·



1/3: simplification
❖ On traduit les λσ-termes 

en remplaçant 
[] par ○, @ par · (σ’)

❖ 1 ○ (N · S) → N                     ↑ ○ (N · S) → S 
                        (N · S) ○ S’ → (N ○ S’) · (S ○ S’) 
(λM) ○ S → λ(M ○ (1 · (S ○ ↑))) 
                        (M ○ S) ○ S’ → M ○ (S ○ S’) 
id ○ S → S                              S ○ id → S 
1 · ↑ → id                               (1 ○ S) · (↑ ○ S) → S



1/3: simplification
❖ On traduit les λσ-termes 

en remplaçant 
[] par ○, @ par · (σ’)

❖ 1 ○ (N · S) → N                     ↑ ○ (N · S) → S 
                        (N · S) ○ S’ → (N ○ S’) · (S ○ S’) 
(λM) ○ S → λ(M ○ (1 · (S ○ ↑))) 
                        (M ○ S) ○ S’ → M ○ (S ○ S’) 
id ○ S → S                              S ○ id → S 
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❖ on va étiqueter chaque opérateur ○ 
par un entier: 
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     le long des réductions
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3/3: le lpo
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❖ Précédence: … > ○m > … > ○2 > ○1 > ○0 
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Termine!



Terminaison de σ
❖ Thm. σ termine.

❖ (Ouf!)

❖ Preuve: (σ) termine si (σ’) termine (version simplifiée) 
              (σ’) termine si (σ’’) termine (semantic labeling) 
              et (σ’’) termine par lpo.  ☐
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Propriétés de σ
❖ Thm. σ termine.

❖ Rappel: σ est localement confluente

❖ Donc tout terme M a une σ-forme normale unique σ(M)

❖ Quelle est la forme 
des σ-formes normales?
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     N1 · N2 · … · Nk · ↑m 
où k, m≥0, les Ni sont σ-normaux 
                    et ↑0=id, ↑1=↑, ↑m+1 = ↑ ○ ↑m pour m≥1

Formes σ-normales (closes)
❖ M, N, … ::= x | 1 | MN| λM | M[S] 

S, S’, … ::= id | N · S | ↑ | S ○ S’
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où k, m≥0, les Ni sont σ-normaux 
                    et ↑0=id, ↑1=↑, ↑m+1 = ↑ ○ ↑m pour m≥1
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     M, N, … ::= n | MN | λM       où n=1[↑n–1] pour n≥2

Formes σ-normales (closes)
❖ M, N, … ::= x | 1 | MN| λM | M[S] 

S, S’, … ::= id | N · S | ↑ | S ○ S’



❖ Les piles σ-normales: 
     N1 · N2 · … · Nk · ↑m 
où k, m≥0, les Ni sont σ-normaux 
                    et ↑0=id, ↑1=↑, ↑m+1 = ↑ ○ ↑m pour m≥1

❖ Les termes clos σ-normaux: 
     M, N, … ::= n | MN | λM       où n=1[↑n–1] pour n≥2

❖ Ce sont juste les λ-termes en notation de de Bruijn!

Formes σ-normales (closes)
❖ M, N, … ::= x | 1 | MN| λM | M[S] 

S, S’, … ::= id | N · S | ↑ | S ○ S’
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Traduction vers λσ

               λ → λσ

❖ x* ( ) = i  si x= xi (avec i minimal) 
                   … et x[↑n] si pas dans  
(uv)* ( ) = u* ( ) (v* ( )) 
(λx . u)* ( ) = λ(u* (x:: ))

❖ Prop. si u → u’ 
alors u* ( ) →+ u’* ( )

ℓ
ℓ

ℓ ℓ ℓ
ℓ ℓ

ℓ ℓ

❖ Paramétrées par une liste =[x1; …; xn] de variables    [suffisamment longue] 
                    (idée: on va remplacer la variable xi par l’indice de de Bruijn i)

ℓ

Comme avec de Bruijn
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                    (idée: on va remplacer la variable xi par l’indice de de Bruijn i)

ℓ

Comme avec de Bruijn

Pénible à démontrer!
voir théorème 3 du poly 

machines.pdf

En fait, u* ( ):
— se réduit par une étape de β 
     en un terme…
— dont u’* ( ) est la σ-forme normale

ℓ

ℓ
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❖ Prop. si M → M’ 
alors Mo ( ) →* M’o ( )ℓ ℓ
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❖ De plus,

❖ Prop.  Pour tout λ-terme clos u, (u* ( ))o ( ) = u.ℓ ℓ
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Traductions de et vers λσ
λ → λσ λσ → λ

❖ De plus,

❖ Prop.  Pour tout λ-terme clos u, (u* ( ))o ( ) = u.ℓ ℓ
❖ Prop.  Pour tout λσ-terme clos M, M →* (Mo ( ))* ( ) 

            … en n’utilisant que les règles de (σ)
ℓ ℓ

❖             En fait, (Mo ( ))* ( ) est la forme σ-normale de M.ℓ ℓ
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Confluence du λσ-calcul

❖ Oui, le λσ-calcul (clos) est confluent…

❖ et c’est très simple!

❖ (On va tricher: on va se ramener au λ-calcul.)

❖ La tricherie s’appelle le lemme d’interprétation 
de Thérèse Hardin, au passage.

https://diccan.com/Hebdo/h58/hhardin.JPG
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M1 M2

(clos)

Côté λ-calcul Côté λσ-calcul

* *

Mo( )ℓ

M1o( )ℓ M2o( )ℓ
* *

pour =[x1; …; xn], 
n assez grand
ℓ
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Confluence du λσ-calcul
❖ M, N, … ::= x | 1 | MN| λM | M[S] 

S, S’, … ::= id | N · S | ↑ | S ○ S’

❖ Thm (A. Ríos).  Le λσ-calcul est confluent.

❖ … y compris en présence de variables de termes (x).



Confluence du λσ-calcul?
❖ M, N, … ::= x | 1 | MN| λM | M[S] 

S, S’, … ::= id | N · S | ↑ | S ○ S’ | X

❖ Thm (A. Ríos).  Le λσ-calcul est confluent.

❖ … y compris en présence de variables de termes (x).

❖ Mais attention:

❖ Thm (Curien, Hardin, Lévy).  Le λσ-calcul avec 
variables X de piles n’est pas confluent (il est localement confluent).



La non-confluence du λσ-calcul

https://www.irif.fr/~curien/Icons/Pierre-Louis.Curien.jpg  
https://diccan.com/Hebdo/h58/hhardin.JPG  
http://moscova.inria.fr/~levy/jjlb8.jpg
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❖ Thm (autoréduction). Si Γ ⊢ M : F et M →* N en λσ 
                                  alors Γ ⊢ N : F

❖ Thm (préservation du typage). 
Si x1:F1, …, xn:Fn ⊢ u : F en λ-calcul (types simples) 
alors F1, …, Fn ⊢ u*([x1, …, xn]) : F en λσ



❖ Thm (terminaison). Si Γ ⊢ M : F 
  alors M est fortement normalisable (en λσ)?
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Paul-André Melliès

https://cs.shanghai.nyu.edu/sites/cs.shanghai.nyu.edu/files/u3/mellies.jpg



Le contre-exemple de Melliès
❖ Pour toute pile S, soit: 

                 rec(S) = ↑ ○ (1[S] · id)       DS(S’) = 1[1[S] · S’] · S 
et soit S1 = (λ1)1 · id

❖ On vérifie que:              S1 ○ S →+ DS(S ○ rec(S))
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et soit S1 = (λ1)1 · id

❖ On vérifie que:              S1 ○ S →+ DS(S ○ rec(S))

❖ Soit CS(S’) = ↑ ○ (1[S’] · S) 
On vérifie que:              rec(S’) ○ S →+ CS(S' ○ S)

❖ Soit Sn+1 = rec(Sn) 
On vérifie que:              Sn ○ Sn+1 →+ CSn+1n–1(DSn+1(Sn+1 ○ Sn+2))

❖ Donc S1 ○ S1 ne termine pas.

❖ Soit u = λz’.(λx.(λy.y)((λz.z)x))((λy.y)z’) : α ⇒ α 

On a u*([]) →+ λ(1[S1 ○ S1]): bien typé, mais ne termine pas!



❖ Thm (normalisation). Si Γ ⊢ M : F 
  alors M est (faiblement) normalisable en λσ

❖ Preuve (esquisse): 
Mo( ) est un λ-terme typable et:ℓ

Types simples pour λσ (clos)

… et même Mo ( ) →+ M’o ( ) 
si M est σ-normal et M → M’ par (β)
(note: Mo ( ) = M’o ( ) si σ-réduction)

ℓ ℓ

ℓ ℓ
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Une machine de Krivine pour λσ 
❖ Une configuration (M, S, args) où args=[N1;…;Nk] 

représente M[S]N1…Nk

rédex (�), autrement de ne pas faire rentrer S dans �M par (�). Ceci est naturel
dans une stratégie de réduction faible, où de toute façon on ne réduira pas sous les
�.

On définira ainsi une machine à la Krivine pour réduire en forme normale de
tête faible comme une machine à états, dont les états sont maintenant des triplets
(M,S, args), où M est un terme, S la pile courante d’évaluation de M , et args la
liste des termes auxquels appliquer M [S]. On obtient :

MN, S, args ! M, S, N [S] :: args
�M, S, N :: args ! M, N · S, args

M [S0], S, args ! M, S0 � S, args

où l’on restreint M à ne pas être de la forme n ou x ou x["n], n � 1 dans la
dernière règle. On complète ceci par une série de règles ayant pour but de normaliser
les substitutions, lorsque le terme est de la forme n ou x ou x["n] (par convention
on écrira x["0] = x) :

1, N · S, args ! N, id, args
n+ 1, N · S, args ! n, S, args

x["n+1], N · S, args ! x["n] S, args
n, ", args ! n+ 1, id, args

x["n], ", args ! x["n+1], id, args
n, " �S, args ! n+ 1, S, args

x["n], " �S, args ! x["n+1], S, args
M, id � S, args ! M, S, args
M, (S00 � S0) � S, args ! M, S00 � (S0 � S), args
M, (N · S0) � S, args ! M, N [S] · (S0 � S), args

où M est de la forme n ou x["n].
Noter que la règle qui s’applique quand le terme est de la forme �M correspond

à la règle (�M)[S]N ! �(M [1 · (S� ")])N ! M [1 · (S� ")][N · id] ! M [(1 · (S� "
)) � (N · id)] !⇤ M [N · S]. Il n’y a pas de règle pour les termes de la forme �M
lorsque la liste d’arguments est vide : c’est ce qui représente le fait qu’on ne propage
pas réellement les substitutions sous les �. Si on voulait le faire, il faudrait ajouter
la règle :

�M, S, [] ! �M, 1 · S� ", []

Noter aussi qu’aucune règle ne réduit spontanément la pile S, sauf lorsque le
terme est de la forme n ou x ou x["n].

Exercice 20 Montrer que si M,S, [M1; . . . ;Mn] !⇤ M 0, S0, [M 0
1; . . . ;M

0
n0 ] dans la

machine ci-dessus, alors M [S]M1 . . .Mn est �-convertible avec un terme qui se
réduit dans le ��-calcul à un terme �-convertible avec M 0[S0]M 0

1 . . .M
0
n0 .

Exercice 21 Montrer que dans le cas semi-clos, si la machine ci-dessus termine,
alors c’est dans un état de la forme M, id, args où M est de la forme n, x, ou x["n],
ou �M 0.

Exercice 22 Une forme normale de tête faible en ��-calcul est un terme de la
forme �M , ou bien hM1 . . .Mn, où la tête h est de la forme n ou x ou x["n].
Montrer que la machine ci-dessus calcule une forme normale de tête faible d’un
��-terme semi-clos M s’il en a une, en démarrant de l’état M, id, []. (On utilisera
la traduction M 7! M�(`) pour ` suffisamment grande et ses propriétés, le théorème
de standardisation du �-calcul, et l’exercice 20.)
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Une machine de Krivine pour λσ 
❖ Une configuration (M, S, args) où args=[N1;…;Nk] 

représente M[S]N1…Nk

❖ … et l’on a les théorèmes de correction, et de progrès attendus:

(Oui, je fatigue)



Conclusions



Calculs à substitutions explicites
❖ Comme on l’a vu, le λσ-calcul présente un mélange de 

— bonnes propriétés 
     (confluence dans le cas clos, σ termine) et de 
— mauvaises propriétés 
     (pas de normalisation forte par ex.)

❖ Peut-on améliorer ça?

❖ Oui… des dizaines de calculs à substitutions explicites 
ont été proposés depuis; mais ce n’est plus un domaine 
actif en recherche aujourd’hui



Implémentations du λ-calcul
❖ Outre les calculs à substitutions explicites, on trouve:

❖ les systèmes de combinateurs (SKI, CBWK, SKInT, etc.)

❖ la géométrie de l’interaction (Girard) 
et sa machine (Mackie)

❖ les calculs de réduction optimale (Lévy; Lamping)

❖ … et puis toutes les machines à environnements utilisées 
en pratique (interprètes, compilateurs; ML, Lisp, 
Haskell, JavaScript, etc.)



Le cours est fini!

❖ Voilà, j’espère que tout ça vous a donné une bonne idée 
de ce qu’est le λ-calcul,

❖ avec ses propriétés fondamentales

❖ ses liens avec la théorie de la preuve

❖ et quelques problèmes liés à son implémentation.


